Violation of finite approximability for single-coefficient commutant equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an equation (resolved with respect to unknowns) such that (i) it has no solution in $F_2$ (a free group of rank $2$), but (ii) it has a solution in any finite homomorphic image of $F_2$. The left-hand-side of this equation belongs to the derived subgroup (i.e. has zero sum of exponents in each variable), while its right-hand-side is the commutator of two generators of $F_2$.
Keywords: free group, equation in a free group, residual finiteness, commutator of elements, commutator subgroup.
@article{VTPMK_2022_2_a0,
     author = {V. G. Durnev and A. I. Zetkina},
     title = {Violation of finite approximability for single-coefficient commutant equations},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--13},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a0/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - A. I. Zetkina
TI  - Violation of finite approximability for single-coefficient commutant equations
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 5
EP  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a0/
LA  - ru
ID  - VTPMK_2022_2_a0
ER  - 
%0 Journal Article
%A V. G. Durnev
%A A. I. Zetkina
%T Violation of finite approximability for single-coefficient commutant equations
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 5-13
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a0/
%G ru
%F VTPMK_2022_2_a0
V. G. Durnev; A. I. Zetkina. Violation of finite approximability for single-coefficient commutant equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 5-13. http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a0/

[1] Borevich Z. I., Shafarevich I. R., Number theory, Nauka Publ., Moscow; FizMatLit, 1972, 496 pp. (in Russian)

[2] Kargapolov M. I., Merzlyakov Yu. I., Fundamentals of group theory, Nauka Publ., Moscow; FizMatLit, 1972, 288 pp. (in Russian) | MR

[3] Maltsev A. I., “On homomorphisms to finite groups”, Scientific notes of the Ivanovo Pedagogical Institute, 18 (1958), 49–60 (in Russian)

[4] Baumslag G., “Residual nilpotency and relations in free groups”, Journal of Algebra, 2 (1965), 271–282 | DOI | MR | Zbl

[5] Coulbois T., Khelif A., “Equations in free groups are not finitely approximable”, Proceedings of the American Mathematical Society, 127:4 (1999), 963–965 | DOI | MR | Zbl

[6] Maltsev A. I., “About the equation $z^{-1} x y x^{-1}y^{-1}z^{-1} = a b a^{-1}b^{-1}$ in a free group”, Algebra and logic, 1:5 (1962), 45–60 (in Russian) ; 36:1 (1972) | MR

[7] Khmelevskij Yu. I., “Systems of equations in a free group. I, II”, Izvestia of the USSR Academy of Sciences. Mathematics Series, 35:6 (1971) ; 36:1 (1972) (in Russian) | MR

[8] Schupp P. E., “On the substitution problem for free groups”, Proceedings of the American Mathematical Society, 23 (1969), 421–423 | DOI | MR | Zbl

[9] Edmunds C. C., “On the endomorphisms problem for free group”, Communications in Algebra, 3 (1975), 7–20 | DOI | MR

[10] Durnev V. G., “On the solvability problem for equations with one coefficient”, Mathematical Notes, 59:6 (1996), 832–845 (in Russian) | MR | Zbl

[11] Durnev V. G., “On equations in free groups”, Chebyshev collection, 13:1 (2012), 59–62 (in Russian) | MR

[12] Makanin A. G., “On the finite approximability of equations in finitely generated nilpotent groups”, Moscow University Mathematics Bulletin, Moscow University Mechanics Bulletin, 1992, no. 1, 48–51 (in Russian) | Zbl

[13] Vdovina A. A., “The product of commutators and squares in a free group”, Tretya mezhdunarodnaya konferentsiya po algebre. Tezisy dokladov, Krasnoyarsk, 1993, 66–67 (in Russian) | MR

[14] Kurosh A. G., Group theory, 3d ed., Nauka Publ., M.; FizMatLit, 1967, 648 pp. (in Russian) | MR

[15] Schutzenberger M. P., “Sur l'equation $a^{2+n} = b^{2+m} c^{2+p}$ dans un groupe libre”, Comptes Rendus de l'Academie des Sciences, 248 (1959), 2435–2436 | MR | Zbl