Partial degrees of fast-growing functions
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2022), pp. 53-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article introduces the notion of fast-growing function and considers partial degrees of fast-growing functions. Partial degrees can be either total or non-total. The notion of e-fast-growing function is introduced, it is proved that partial degrees of fast-growing functions are not total and decomposable.
Keywords: partial degrees, quasi-minimal partial degrees, fast-growing functions, e-fast-growing functions.
@article{VTPMK_2022_1_a4,
     author = {B. Ya. Solon},
     title = {Partial degrees of fast-growing functions},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {53--68},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a4/}
}
TY  - JOUR
AU  - B. Ya. Solon
TI  - Partial degrees of fast-growing functions
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 53
EP  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a4/
LA  - ru
ID  - VTPMK_2022_1_a4
ER  - 
%0 Journal Article
%A B. Ya. Solon
%T Partial degrees of fast-growing functions
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 53-68
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a4/
%G ru
%F VTPMK_2022_1_a4
B. Ya. Solon. Partial degrees of fast-growing functions. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2022), pp. 53-68. http://geodesic.mathdoc.fr/item/VTPMK_2022_1_a4/

[1] Rozinas M. G., “Partial degrees and r-degrees”, Siberian Mathematical Journal, 15:6 (1974), 1323–1331 (in Russian) | MR

[2] Case J., “Enumeration reducibility and partial degreees”, Annals of Mathematical Logic, 2:4 (1971), 419–439 | DOI | MR | Zbl

[3] Medvedev Yu. T., “Degrees of difficulty of the mass problem”, Doklady Akademii Nauk SSSR, 104 (1955), 501–504 | MR | Zbl

[4] Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Education, New York, 1967 | MR | Zbl