Mots-clés : algorithm convergence.
@article{VTPMK_2021_3_a5,
author = {V. I. Zabotin and P. A. Chernyshevsky},
title = {Two modifications of extension of {Piyavskii's} global optimization algorithm to a function continuous on a compact interval and its convergence},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {70--85},
year = {2021},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a5/}
}
TY - JOUR AU - V. I. Zabotin AU - P. A. Chernyshevsky TI - Two modifications of extension of Piyavskii's global optimization algorithm to a function continuous on a compact interval and its convergence JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2021 SP - 70 EP - 85 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a5/ LA - ru ID - VTPMK_2021_3_a5 ER -
%0 Journal Article %A V. I. Zabotin %A P. A. Chernyshevsky %T Two modifications of extension of Piyavskii's global optimization algorithm to a function continuous on a compact interval and its convergence %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2021 %P 70-85 %N 3 %U http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a5/ %G ru %F VTPMK_2021_3_a5
V. I. Zabotin; P. A. Chernyshevsky. Two modifications of extension of Piyavskii's global optimization algorithm to a function continuous on a compact interval and its convergence. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2021), pp. 70-85. http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a5/
[1] Piyavskij S. A., “An algorithm for finding the absolute minimum of a function”, Theory of Optimal Solutions, 2 (1967), 13–24 (in Russian) | MR
[2] Piyavskij S. A., “An algorithm for finding the absolute extremum of a function”, USSR Computational Mathematics and Mathematical Physics, 12:4 (1972), 57–67 | DOI | MR
[3] Yevtushenko Yu. G., “Numerical methods for finding global extrema (Case of a non-uniform mesh)”, USSR Computational Mathematics and Mathematical Physics, 11:6 (1971), 38–54 | DOI | Zbl
[4] Shubert B., “A sequential method seeking the global maximum of a function”, SIAM Journal on Numerical Analysis, 9 (1972), 379–388 | DOI | MR | Zbl
[5] Strongin R. G., Numerical methods in multiextremal problems, Nauka Publ., Moscow, 1978, 240 pp. (in Russian)
[6] Sergeev Ya. D., Kvasov D. E., Diagonal methods of global optimization, Fizmatlit Publ., Moscow, 2008, 352 pp. (in Russian)
[7] Zabotin V. I., Arutyunova N. K., “Two algorithms for finding point projection on nonconvex set in normalized space”, Journal of Computational Mathematics and Mathematical Physics, 53:3 (2013), 344–349 (in Russian) | Zbl
[8] Arutyunova N. K., Dulliev A. M., Zabotin V. I., “Algorithms for projecting a point onto a level surface of a continuous function on a compact set”, Computational Mathematics and Mathematical Physics, 54:9 (2014), 1395–1401 | DOI | MR | Zbl
[9] Chernyaev Yu. A., “Numerical algorithm for solving mathematical programming problems with a smooth surface as a constraint”, Computational Mathematics and Mathematical Physics, 56:3 (2016), 376–381 | DOI | MR | Zbl
[10] Chernyaev Yu. A., “On a numerical algorithm for optimization problems with preconvex constraints”, Computational Mathematics and Mathematical Physics, 43:2 (2003), 162–167 | MR | Zbl
[11] Chernyaev Yu. A., “An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface”, Computational Mathematics and Mathematical Physics, 55:9 (2015), 1451–1460 | DOI | MR | Zbl
[12] Gelbaum B., Olmsted Dzh., Counterexamples in analysis, Mir Publ., Moscow, 1967, 251 pp. (in Russian)
[13] Vanderbei R. J., “Extension of Piyavskii's Algorithm to Continuous Global Optimization”, Journal of Global Optimization, 14 (1999), 205–216 | DOI | Zbl
[14] Arutyunova N. K., “Yevtushenko's method for finding $\varepsilon $-Lipschitzian function global minimum and its application”, Herald of the KSTU-KAI Named After A.N. Tupolev, 2013, no. 2, 154–157 (in Russian)
[15] Arutyunova N. K., Dulliev A. M., Zabotin V. I., “Models and methods for three external ballistics inverse problems”, Bulletin of the South Ural State University: Series “Mathematical modelling, Programming and Computer software”, 10:4 (2017), 78–91 | Zbl
[16] Zabotin V. I., Chernyshevskij P. A., “An algorithm for calculation the minimal estimate of the continuous function Lipschitz $\varepsilon $-constant”, Herald of the KSTU-KAI Named After A.N. Tupolev, 2018, no. 2, 127–132 (in Russian)
[17] Zabotin V. I., Chernyshevskij P. A., “Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval”, Computer Research and Modeling, 11 (2019), 1111–1119 | DOI
[18] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Ucheb. posobie dlya vuzov, 2-e izd., pererab. i dop., Nauka Publ., Moscow, 1988, 552 pp. (in Russian)