Mots-clés : unoid, term.
@article{VTPMK_2021_3_a2,
author = {D. O. Daderkin},
title = {Truth-table unoids not satisfying the {Urzyczyn's} conditions},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {33--43},
year = {2021},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a2/}
}
D. O. Daderkin. Truth-table unoids not satisfying the Urzyczyn's conditions. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2021), pp. 33-43. http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a2/
[1] Urzyczyn P., “Algorithmic triviality of abstract structures”, Fundamenta Informaticae, 1981, no. 4, 819–849 | DOI | MR | Zbl
[2] Urzyczyn P., “The unwind property in certain algebras”, Information and Control, 50:2 (1981), 91–109 | DOI | MR | Zbl
[3] Urzyczyn P., “Deterministic context-free dynamic logic is more expressive than deterministic dynamic logic of regular programs”, Foundation of computer theory, Springer-Verlag, Berlin, 1983, 469–504
[4] Stolboushkin A. P., Tajtslin M. A., “Dynamic logic”, Cybernetics and computing, 1986, no. 2, 180–230 (in Russian) | MR
[5] Stolboushkin A. P., Taitslin M. A., “Deterministic dynamic logic is stricly weaker than dynamic logic”, Information and Control, 57:1 (1983), 48–55 | DOI | MR | Zbl
[6] Dudakov S. M., Karlov B. N., Mathematical Introduction to Computer Science, Tutorial, Tver State University, Tver, 2017, 320 pp. (in Russian)
[7] Daderkin D. O., “On Urzyczyn's Unoids with a Connected Underlying Set”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 117–125 (in Russian) | DOI
[8] Daderkin D. O., “Truth-table Unoids Satisfying the Urzyczyn's Conditions”, Herald of Tver State University. Series: Applied Mathematics, 2021, no. 1, 59–70 (in Russian) | DOI
[9] Kfoury A. J., Urzyczyn P., “Necesseary and sufficient conditions for the universality of programming formalisms”, Acta informatica, 22 (1985), 347–377 | DOI | MR | Zbl
[10] Kfoury A. J., “Definability by deterministic and nondeterministic programs (with applications to first-order dynamic logic)”, Information and Control, 65 (1985), 98–121 | DOI | MR | Zbl
[11] Tiuryn J., “Unbounded program memory adds to the expressive power of first-order programming logic”, Information and Control, 60 (1984), 12–35 | DOI | MR | Zbl
[12] Tiuryn J., Urzyczyn P., “Remarks on comparing expressive power of Logics of Programms”, Mathematical Foundations of Computer Science, v. 176, Lecture Notes in Computer Science, eds. M.P. Chytil, V. Koubek, Springer, Berlin, Heidelberg, 1984, 535–543 | DOI