On elementary equivalence of some unoids and unoids of their subsets
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2021), pp. 18-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the properties of unoids which contain a single injective function. Necessary and sufficient conditions are established for two such unoids to be elementarily equivalent. From this result we obtain necessary and sufficient conditions for the unoid of all subsets of unoid $\mathfrak A$ to be elementarily equivalent to the original unoid $\mathfrak A$.
Mots-clés : unoid
Keywords: algebra of subsets, elementary equivalence.
@article{VTPMK_2021_3_a1,
     author = {B. N. Karlov},
     title = {On elementary equivalence of some unoids and unoids of their subsets},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {18--32},
     year = {2021},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a1/}
}
TY  - JOUR
AU  - B. N. Karlov
TI  - On elementary equivalence of some unoids and unoids of their subsets
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2021
SP  - 18
EP  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a1/
LA  - ru
ID  - VTPMK_2021_3_a1
ER  - 
%0 Journal Article
%A B. N. Karlov
%T On elementary equivalence of some unoids and unoids of their subsets
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2021
%P 18-32
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a1/
%G ru
%F VTPMK_2021_3_a1
B. N. Karlov. On elementary equivalence of some unoids and unoids of their subsets. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2021), pp. 18-32. http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a1/

[1] Dudakov S. M., “On algorithmic properties of finite subset algebra for some unoids”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 108–116 (in Russian) | DOI

[2] Dudakov S. M., “On theory of finite subsets monoid for one torsion abelian group”, Herald of Tver State University. Series: Applied Mathematics, 2021, no. 2, 39–55 (in Russian) | DOI

[3] Dudakov S. M., “On Undecidability of Subset Theory for Some Monoids”, Journal of Physics: Conference Series, 1902:1 (2021), 012060 | DOI

[4] Lang S., Algebra, Springer, New York, 2002, 918 pp. | Zbl

[5] Marker D., Model theory: an introduction, Springer-Verlag, New York, 2002, 345 pp. | Zbl

[6] Mostowski A., “On direct products of theories”, The Journal of Symbolic Logic, 17:3 (1952), 1–31 | DOI | MR | Zbl

[7] Tarski A., “Arithmetical classes and types of boolean algebras”, Bulletin of the American Mathematical Society, 55:1 (1949), 63–63