Computational complexity of the word problem in modal algebras
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2021), pp. 5-17
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the word problem for modal algebras. It is proved that, for the variety of all modal algebras, the word problem is $\mathrm{PSPACE}$-complete if only constant modal terms or only $0$-generated modal algebras are considered. We also consider the word problem for different varieties of modal algebras. It is proved that the word problem for a variety of modal algebras can be $C$-hard, for any complexity class or unsolvability degree $C$ containing a $C$-complete problem. It is shown how to construct such varieties.
Mots-clés :
modal algebra
Keywords: word equality problem, computational complexity.
Keywords: word equality problem, computational complexity.
@article{VTPMK_2021_3_a0,
author = {M. N. Rybakov},
title = {Computational complexity of the word problem in modal algebras},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--17},
publisher = {mathdoc},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a0/}
}
TY - JOUR AU - M. N. Rybakov TI - Computational complexity of the word problem in modal algebras JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2021 SP - 5 EP - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a0/ LA - ru ID - VTPMK_2021_3_a0 ER -
M. N. Rybakov. Computational complexity of the word problem in modal algebras. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2021), pp. 5-17. http://geodesic.mathdoc.fr/item/VTPMK_2021_3_a0/