On theory of finite subsets monoid for one torsion abelian group
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2021), pp. 39-55
Voir la notice de l'article provenant de la source Math-Net.Ru
Earlier it was proved the following claim. Let G be a non-torsion abelian group and G be the semigroup of finite subsets of G. Then elementary arithmetic can be interpreted in $G^*$, so the theory of $G^*$ is undecidable. Here we prove the same result for one torsion group, the multiplicative group of all roots of unity.
Mots-clés :
torsion group
Keywords: semigroup of subsets, elementary arithmetic, undecidability.
Keywords: semigroup of subsets, elementary arithmetic, undecidability.
@article{VTPMK_2021_2_a3,
author = {S. M. Dudakov},
title = {On theory of finite subsets monoid for one torsion abelian group},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {39--55},
publisher = {mathdoc},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a3/}
}
TY - JOUR AU - S. M. Dudakov TI - On theory of finite subsets monoid for one torsion abelian group JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2021 SP - 39 EP - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a3/ LA - ru ID - VTPMK_2021_2_a3 ER -
S. M. Dudakov. On theory of finite subsets monoid for one torsion abelian group. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2021), pp. 39-55. http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a3/