Keywords: Stokes approximation, variable viscosity, temperature gradient.
@article{VTPMK_2021_2_a2,
author = {A. O. Syromyasov and T. V. Menshakova},
title = {Viscous fluid flow between plane walls in presence of temperature gradient},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {26--38},
year = {2021},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a2/}
}
TY - JOUR AU - A. O. Syromyasov AU - T. V. Menshakova TI - Viscous fluid flow between plane walls in presence of temperature gradient JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2021 SP - 26 EP - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a2/ LA - ru ID - VTPMK_2021_2_a2 ER -
%0 Journal Article %A A. O. Syromyasov %A T. V. Menshakova %T Viscous fluid flow between plane walls in presence of temperature gradient %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2021 %P 26-38 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a2/ %G ru %F VTPMK_2021_2_a2
A. O. Syromyasov; T. V. Menshakova. Viscous fluid flow between plane walls in presence of temperature gradient. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2021), pp. 26-38. http://geodesic.mathdoc.fr/item/VTPMK_2021_2_a2/
[1] Landau L. D., Lifshitz E. M., Fluid Mechanics, 2nd ed., Butterworth–Heinemann, Waltham, Massachusetts, 1986, 736 pp. | MR
[2] Vargaftik N. B., Handbook of thermophysical properties of gases and liquids, Second Edition, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1972, 720 pp. (in Russian)
[3] Malai N. V., “Thermophoresis of a Rigid Spherical Particle in a Fluid”, Fluid Dynamics, 38:6 (2003), 954–962 | DOI | Zbl
[4] Glushak A. V., Malaj N. V., Mironova N. N., “Boundary value problem for the Navier–Stokes equations linearized in rate in the case of non-isothermal flow of heated gaseous medium spheroid”, Journal of computational mathematics and mathematical physics, 52:5 (2012), 946–959 (in Russian) | Zbl
[5] Glushak A. V., Malai N. V., Shchukin E. R., “Solution of a boundary value problem for velocity-linearized Navier–Stokes equations in the case of a heated spherical solid particle settling in fluid”, Journal of computational mathematics and mathematical physics, 58:7 (2018), 1132–1141 | DOI | MR | Zbl
[6] Felderhof B. U., “Thermocapillary mobility of bubbles and electrophoretic motion of particles in a fluid”, Journal of Engineering Mathematics, 30 (1996), 299–305 | DOI | MR | Zbl
[7] Morris S., “The effects of a strongly temperature-dependent viscosity on a slow flow past a hot sphere”, Journal of Fluid Mechanics, 124 (1982), 1–26 | DOI | Zbl
[8] Ansari A., Morris S., “The effects of a strongly temperature-dependent viscosity on Stokes’s drag law: experiments and theory”, Journal of Fluid Mechanics, 159 (1985), 459–476 | DOI | Zbl
[9] Muskat M., Physical Principles of Oil Production, McGraw-Hill, New York, Izhevsk, 1949, 606 pp.
[10] Abramov A. A., Abramov F. A., Butkovskii A. V., Chernyshev S. L., “Effect of Viscous Friction Reduction by Blocking Dissipation”, Fluid Dynamics, 55:6 (2020), 743–750 | DOI
[11] Lojtsyanskij L. G., Fluid and Gas Mechanics, Drofa Publ., Moscow, 1987, 840 pp. (in Russian)
[12] Happel J., Brenner H., Low Reynolds-number hydrodynamics, Prentice-Hall, New Jersey, 1965, 632 pp. | MR
[13] Sedov L. I., Mechanics of Continuous Media, v. 1, World Scientific Publishing Company, New Jersey, 1997, 528 pp. | MR | Zbl