Justification of requirements for digital signal synthesizers for various types of radar
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2020), pp. 43-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper substantiates the requirements for the level of distortion of radar stations with pulsed and quasi-continuous radiation, built on the basis of digital signal synthesizers of four types: digital synthesizers of voltage counts and digital synthesizers of phase counts with uniform sampling, digital synthesizers of voltage counts and digital synthesizers of phase counts with uneven sampling. When building a radar master device, the question arises about choosing the type of digital signal synthesizer. The main initial criteria are the maximum operating range of the digital synthesizer and the level of in-band distortion. When choosing the type of digital signal synthesizer, you must take into account a large number of factors, the main of which are the complexity of the execution of the digital readout shaper, the possibility of implementing a digital readout shaper with the required speed and number of digits [1, 2]. When making requirements for the total level of distortion, the criterion of acceptable reduction of the probability of correct detection in comparison with its potential value for a fixed probability of false alarm is used. Based on this criterion, in pulse radars, the maximum relative RMS value of the distortion of the intercorrelation function of a signal with angular modulation generated by a digital synthesizer should not exceed $D_{\delta x}\le -(51\dots67)$ dB. In a radar with quasi-continuous radiation, the maximum relative mean-square value of the distortion of the autocorrelation function of the signal with angular modulation should not exceed $D_{\delta }\le -(80\dots120)$ dB. The number of bits of phase quantization, voltage and time delay compensation in digital signal synthesizers depends not only on the maximum relative RMS value of the distortion of the intercorrelation function, but also on the number of samples of the signal with angular modulation. Therefore, initially you need to select the reference frequency of the digital signal synthesizer, setting the type of modulation and the effective spectrum width of the signal with angular modulation based on the tactical and technical characteristics radar.
Keywords: digital signal synthesizers, sample rate.
Mots-clés : phase and voltage quantization
@article{VTPMK_2020_4_a3,
     author = {D. S. Viktorov and E. V. Plastinina and E. V. Samovolina},
     title = {Justification of requirements for digital signal synthesizers for various types of radar},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {43--55},
     year = {2020},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_4_a3/}
}
TY  - JOUR
AU  - D. S. Viktorov
AU  - E. V. Plastinina
AU  - E. V. Samovolina
TI  - Justification of requirements for digital signal synthesizers for various types of radar
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 43
EP  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_4_a3/
LA  - ru
ID  - VTPMK_2020_4_a3
ER  - 
%0 Journal Article
%A D. S. Viktorov
%A E. V. Plastinina
%A E. V. Samovolina
%T Justification of requirements for digital signal synthesizers for various types of radar
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 43-55
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_4_a3/
%G ru
%F VTPMK_2020_4_a3
D. S. Viktorov; E. V. Plastinina; E. V. Samovolina. Justification of requirements for digital signal synthesizers for various types of radar. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2020), pp. 43-55. http://geodesic.mathdoc.fr/item/VTPMK_2020_4_a3/

[1] Kochemasov V., Skok D., Cherkashin A., “Tsifrovye vychislitelnye sintezatory - sovremennye resheniya”, Elektronika: NTB, 2014, no. 2, 150–160 (in Russian)

[2] Kochemasov V., Skok D., Cherkashin A., “Tsifrovye vychislitelnye sintezatory - sovremennye resheniya”, Elektronika: NTB, 2014, no. 4, Chast 2., 152–156 (in Russian)

[3] Viktorov D. S., Plastinina E. V., Garin E. N., Lyutikov I. V., “Metod kompensatsii iskazhenij signalov s uglovoj modulyatsiej v tsifrovykh sintezatorakh signalov”, Uspekhi sovremennoj radioelektroniki, 2017, no. 12, 86–89 (in Russian)

[4] Viktorov D. S., Plastinina E. V., “Korrektsiya nelinejnykh iskazhenij v tsifrovykh formirovatelyakh signalov”, Zhurnal Sibirskogo Federalnogo Universiteta. Tekhnika i tekhnologiya, 11:3 (2018), 336–346 (in Russian)

[5] Viktorov D. S., Plastinina E. V., “Metody umensheniya neravnomernosti peredatochnoj kharakteristiki formirovatelya analogovykh otschetov tsifrovykh sintezatorov signalov s ravnomernoj diskretizatsiej”, Zhurnal Sibirskogo Federalnogo Universiteta. Tekhnika i tekhnologiya, 12:6 (2019), 630–640 (in Russian)

[6] Viktorov D. S., Plastinina E. V., “Metody umensheniya modulyatsionnykh iskazhenij v traktakh formirovaniya i priemno-peredayushchikh traktakh RLS”, Zhurnal Sibirskogo Federalnogo Universiteta. Tekhnika i tekhnologiya, 11:7 (2018), 451–461 (in Russian)

[7] Viktorov D. S., Plastinina E. V., “Metodika opredeleniya otnositelnoj srednekvadraticheskoj otsenki iskazheniya spektra signala s uglovoj modulyatsiej v tsifrovykh sintezatorakh s ravnomernoj diskretizatsiej”, Zhurnal Sibirskogo Federalnogo Universiteta. Tekhnika i tekhnologiya, 13:3 (2020), 259–271 (in Russian)

[8] Sosulin Yu. G., Kostrov V. V., Parshin Yu. N., Otsenochno-korrelyatsionnaya obrabotka signalov i kompensatsiya pomekh, Radiotekhnika Publ., Moscow, 2014, 632 pp. (in Russian)

[9] Kurilov I. A., Rudakov A. M., Kharchuk S. M., Romanov D. N., “Matematicheskoe modelirovanie avtokompensatsii fazovykh pomekh na vykhode TsAP pryamogo tsifrovogo sintezatora chastot”, Radiotekhnicheskie i telekommunikatsionnye sistemy, 2:10 (2013), 19–25 (in Russian)

[10] Vasilev G. S., Kurilov I. A., Kharchuk S. M., “Modelirovanie nelinejnogo avtokompensatora fazovykh pomekh TsAP pryamogo tsifrovogo sintezatora chastot”, Radiotekhnicheskie i telekommunikatsionnye sistemy, 2014, no. 2, 30–38 (in Russian)

[11] Gomozov V. I., “Trebovaniya k parametram odinochnykh i sostavnykh LChM signalov i postroenie ikh unifitsirovannykh vozbuditelej dlya RLS s kogerentnymi posledovatelnostyami impulsov”, Voennaya radioelektronika, 1979, no. 4, 3–18 (in Russian)

[12] Gomozov V. I., Formirovanie slozhnykh radiolokatsionnykh SVCh signalov s vysokoj skorostyu uglovoj modulyatsii, Diss. d.t.n., VIRTA, 1982, 485 pp. (in Russian)

[13] Makarychev E. M., “Otsenka vliyaniya nelinejnykh iskazhenij tsifrovogo i analogovogo trakta DDS na spektry geterodinnykh signalov v oblasti doplerovskikh otstroek”, Radiotekhnika, 2015, no. 4, 105–111 (in Russian)

[14] Vasilev G. S., Surzhik D. I., Kurilov I. A., Kharchuk S. M., Romanov D. N., Avtomaticheskij kompensator fazovykh pomekh na vykhode tsifro-analogovogo preobrazovatelya sintezatora chastot, Patent na poleznuyu model N 2015130455 ot 22.07.2015 (in Russian)

[15] Zajtsev A. L., Tsifrovye sintezatory signalov s chastotnoj modulyatsiej i ikh ispolzovanie pri radiofizicheskikh issledovaniyakh planet, Diss. k.t.n., IRE, Moscow, 1982, 352 pp. (in Russian)