Using the method of moments for the approximation of signals containing peak shaped structural elements
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 68-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a generalization of the method of moments which was proposed in a recent article for modeling electrocardiogram waves with sets of several Gauss functions is performed. The purpose is to make the method applicable to functions of a more general form, while maintaining the simplicity of its program implementation. For this a series of mathematical transformations were carried out in a general form and sufficiently simple relations were obtained for calculating the parameters of the model signal. This makes it possible to use functions of various types for the approximation of signal regions, dictated by their physical model. The only restriction for the functions used is the existence of the required number of moments, and the moment of zero order must be different from zero. This paper demonstrates several examples of the implementation of the generalized method of moments. It is shown that in practice, depending on the type of function used for modeling, a number of computational features arise concerning the accuracy of the method and its stability with respect to noise. Obtained results can be useful for developing new effective models of biomedical signals, atomic and nuclear spectra, as well as other types of signals that have peak shaped local features.
Keywords: method of moments, digital signal, component separation
Mots-clés : compression.
@article{VTPMK_2020_3_a5,
     author = {L. A. Minin and E. G. Suponev and E. A. Kiselev},
     title = {Using the method of moments for the approximation of signals containing peak shaped structural elements},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {68--77},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a5/}
}
TY  - JOUR
AU  - L. A. Minin
AU  - E. G. Suponev
AU  - E. A. Kiselev
TI  - Using the method of moments for the approximation of signals containing peak shaped structural elements
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 68
EP  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a5/
LA  - ru
ID  - VTPMK_2020_3_a5
ER  - 
%0 Journal Article
%A L. A. Minin
%A E. G. Suponev
%A E. A. Kiselev
%T Using the method of moments for the approximation of signals containing peak shaped structural elements
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 68-77
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a5/
%G ru
%F VTPMK_2020_3_a5
L. A. Minin; E. G. Suponev; E. A. Kiselev. Using the method of moments for the approximation of signals containing peak shaped structural elements. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 68-77. http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a5/

[1] Addison P., “Wavelet Transforms and the ECG: a Review”, Physiological Measurement, 26:5 (2005), R155–R199 | DOI

[2] Golubov B. I., Efimov A. V., Skvortsova V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, LKI Publ., Moscow, 2008, 352 pp. (in Russian)

[3] Bracewell R., The Fourier Transform and its Applications, McGraw-Hill, New York, 2000, 618 pp. | MR

[4] Nikiforov P. L., “Model of an electrocardiographic signal based on a set of bell pulses”, Bulletin of Young Scientists. Series: Technical Sciences, 1998, no. 1, 64–68 (in Russian)

[5] Naser N., “Approximation of peaks in electrocardiograms by a combination of shifts of the Gaussian function”, Management systems and information technologies, 2015, no. 1(59), 77–80 (in Russian)

[6] Kiselev E. A., Naser N. M., Suponev E. G., “The combined algorithm of compression of electrocardiogram signal using the Daubechies bursts and of the Gauss function”, Management systems and information technologies, 2017, no. 3(69), 53–56 (in Russian)

[7] Matulis V. E., Matulis V. E., Ivashkevich O. A., Applied quantum chemistry, BGU Publ., Minsk, 2007, 143 pp. (in Russian)

[8] Dobeshi I., Ten Wavelet Lectures, Regular and Chaotic Dynamics Publ., Izhevsk, 2001, 464 pp. (in Russian)

[9] Zhuravlev M. V., Minin L. A., Sitnik S. M., “On the computational characteristics of interpolation by using the integer shifts of Gaussian functions”, Bulletin of the Belgorod state University, 2009, no. 13(68), 89–99 (in Russian) | MR

[10] Lang K. R., Astrophysical Formulae, Springer Verlag, Berlin, Heidelberg, New York, 1980, 783 pp.

[11] Mukhin K. N., Experimental nuclear physics, v. 2, Lan Publ., SPb., 2009, 326 pp. (in Russian)