Automatic generation of recommended systems based on qualitative interpretation of monitoring information
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 50-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article describes decision-making methods based on intelligent learning algorithms; for the construction of which verbal elements are used. Such algorithms and methods usually work in calculations with strictly quantitative data; however; taking into account the human way of perceiving information in verbal form. The person does not directly participate in the process of building the model; that is; its structure does not depend on expert or other human opinions; however; high-quality verbal information (for example; elements of regulations; documents; orders; etc.) is embedded in the algorithm in coded form. Computational experiments are presented.
Keywords: soft computing, decision support system, automatic generation of systems.
Mots-clés : verbal response
@article{VTPMK_2020_3_a4,
     author = {E. Sh. Kremleva and A. P. Snegurenko and S. V. Novikova and N. L. Valitova},
     title = {Automatic generation of recommended systems based on qualitative interpretation of monitoring information},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {50--67},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a4/}
}
TY  - JOUR
AU  - E. Sh. Kremleva
AU  - A. P. Snegurenko
AU  - S. V. Novikova
AU  - N. L. Valitova
TI  - Automatic generation of recommended systems based on qualitative interpretation of monitoring information
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 50
EP  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a4/
LA  - ru
ID  - VTPMK_2020_3_a4
ER  - 
%0 Journal Article
%A E. Sh. Kremleva
%A A. P. Snegurenko
%A S. V. Novikova
%A N. L. Valitova
%T Automatic generation of recommended systems based on qualitative interpretation of monitoring information
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 50-67
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a4/
%G ru
%F VTPMK_2020_3_a4
E. Sh. Kremleva; A. P. Snegurenko; S. V. Novikova; N. L. Valitova. Automatic generation of recommended systems based on qualitative interpretation of monitoring information. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 50-67. http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a4/

[1] Novikova S. V., “Structural optimization of the neural network model for the gas turbine engine monitoring”, Russian Aeronautics, 59:2 (2016), 263–270 | DOI

[2] Zadeh L. A., “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl

[3] Novikova S. V., Kremleva E. Sh., Valitova N. L., “Soft cyclic data encoding using a quasi-fuzzy measure”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 3, 90–101 (in Russian) | DOI

[4] Shtovba S. D., Designing fuzzy systems using MatLab, Goryachaya liniya-Telkom, Moscow, 2007, 284 pp. (in Russian)

[5] Tunakova Yu. A., Novikova S. V., Shagidullina R. A., Kremleva E. Sh., “The role of qualitative assessments in the tasks of environmental management in the areas of polymer production”, Bulletin of Kazan Technological University, 16:20 (2013), 276–279 (in Russian)

[6] Katasyov A. S., “Methods and algorithms for the formation of fuzzy models for assessing the state of objects in conditions of uncertainty”, Bulletin of Technological University, 22:3 (2019), 138–147 (in Russian)

[7] Danilaev D. P., Emaletdinova L. Yu., “Fuzzy model for the selection of profiles for the training of technical specialists”, Open education, 2015, no. 4, 28–32 (in Russian)

[8] Salimov R. I., Trutneva A. A., Snegurenko A. P., “ERP System as a Method of Effective Economic Management by the Example of the Russian Federation”, Proceedings of the International Scientific Conference “Far East Con”, ISCFEC 2020, Advances in Economics, Business and Management Research, Atlantis Press, 2020, 3075–3082 | DOI

[9] Kozlova A., Snegurenko A., “University risk assessment and management system”, IOP Conference Series: Materials Science and Engineering, v. 666, IOP Publishing, 2019, 012050 | DOI

[10] Kremleva E. Sh., Novikova S. V., “Integral assessment of the state of the environment with verbal interpretation”, Materials of the all-Russian scientific and practical conference with international participation “New technologies; materials and equipment of the Russian aerospace industry”, v. 4, Kazan State Technical University Publ., Kazan, 2018, 164–168 (in Russian)

[11] Novikova K. N., “Razrabotka linejnykh i nelinejnykh modelej dlya opredeleniya soderzhaniya melkodispersnykh chastits RM2.5 v prizemnom sloe atmosfernogo vozdukha na primere g.Kazani”, Collection of scientific papers of young scientists, Publishing house of the Academy of Sciences of the Republic of Tatarstan, Kazan, 2018, 231–239 (in Russian)

[12] Shtovba S. D., Vvedenie v teoriyu nechetkikh mnozhestv i nechetkuyu logiku, Izdatelstvo vinnitskogo gosudarstvennogo tekhnicheskogo universiteta, Vinnitsa, 2001, 198 pp. (in Russian)

[13] Kremleva E. Sh., Novikova S. V., “Metodika polucheniya lingvisticheskogo otveta ot logicheskoj sistemy s kolichestvennym vykhodom”, Collection of articles of the international scientific and practical conference “Topical issues of science modernization” (22 maya 2014 g.), Aeterna, Ufa, 2014, 24–26 (in Russian)

[14] Sivanandam S. N., Sumathi S., Deepa S. N., Introduction to Fuzzy Logic using MATLAB, Springer-Verlag, Berlin, Heidelberg, 2007, 425 pp. | Zbl