On equivalence of two PFP-operator semantics
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 41-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two different semantics of partial fixed point (PFP) operator. We establish that they are equivalent for structures those contain more than one element. For this purpose we show how to translate each type of PFP-operator to other one.
Keywords: partial fixed point, infinite structure, semantic.
@article{VTPMK_2020_3_a3,
     author = {V. S. Sekorin},
     title = {On equivalence of two {PFP-operator} semantics},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {41--49},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a3/}
}
TY  - JOUR
AU  - V. S. Sekorin
TI  - On equivalence of two PFP-operator semantics
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 41
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a3/
LA  - ru
ID  - VTPMK_2020_3_a3
ER  - 
%0 Journal Article
%A V. S. Sekorin
%T On equivalence of two PFP-operator semantics
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 41-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a3/
%G ru
%F VTPMK_2020_3_a3
V. S. Sekorin. On equivalence of two PFP-operator semantics. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 41-49. http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a3/