A grid method for solving the first initial boundary value problem for a loaded differential equation of fractional order convection diffusion
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 27-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first initial boundary value problem for a loaded differential equation of fractional order convection diffusion is considered. A difference scheme approximating this problem is constructed on a uniform grid. To solve the problem, assuming the existence of a regular solution, a priori estimates in differential and difference forms are obtained. From these estimates follow the uniqueness and continuous dependence of the solution on the input data of the problem, as well as the convergence with the rate $O(h^2+\tau^2)$.
Keywords: loaded equations, boundary value problems, fractional order differential equation, fractional Caputo derivative.
Mots-clés : a priori estimation, convection diffusion equation
@article{VTPMK_2020_3_a2,
     author = {M. KH. Beshtokov},
     title = {A grid method for solving the first initial boundary value problem for a loaded differential equation of fractional order convection diffusion},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {27--40},
     year = {2020},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a2/}
}
TY  - JOUR
AU  - M. KH. Beshtokov
TI  - A grid method for solving the first initial boundary value problem for a loaded differential equation of fractional order convection diffusion
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 27
EP  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a2/
LA  - ru
ID  - VTPMK_2020_3_a2
ER  - 
%0 Journal Article
%A M. KH. Beshtokov
%T A grid method for solving the first initial boundary value problem for a loaded differential equation of fractional order convection diffusion
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 27-40
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a2/
%G ru
%F VTPMK_2020_3_a2
M. KH. Beshtokov. A grid method for solving the first initial boundary value problem for a loaded differential equation of fractional order convection diffusion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2020), pp. 27-40. http://geodesic.mathdoc.fr/item/VTPMK_2020_3_a2/

[1] Knezer A., “Belastete integralgleichungen”, Rendiconti del Circolo Matematico di Palermo, 37 (1914), 169–197 | DOI

[2] Lichtenstein L., Vorlesungen uber einige Klassen Nichtlinearer Integralgleichungen und Integro-Differentialgleichungen - Nebst Anwendungen, Springer, 1931, 180 pp. | Zbl

[3] Nazarov H. H., “On a new class of linear integral equations”, Proceedings of the Institute of mathematics and mechanics of the USSR Academy of Sciences, 1948, no. 4, 77–106 (in Russian)

[4] Gabib-zade A. Sh., “Investigation of the solution of a class of linear loaded integral equations”, Proceedings of the Institute of physics and mathematics of the Academy of Sciences of the AzSSR. Mathematical Series, 1959, no. 8, 177–182 (in Russian)

[5] Budak B. M., Iskenderov A. D., “On a class of boundary value problems with unknown coefficients”, Proceedings of the USSR Academy of Sciences, 175:1 (1967), 13–16 (in Russian) | Zbl

[6] Nakhushev A. M., “Loaded equations and their applications”, Differential Equations, 19:1 (1983), 86–94 (in Russian) | MR | Zbl

[7] Kaziev V. M., “Tricomi problem for the loaded Lavrentiev-Bitsadze equation”, Differential Equations, 15:1 (1979), 173–175 (in Russian) | MR | Zbl

[8] Krall A. M., “The development of general differential and general differential boundary systems”, Rocky Mountain Journal of Mathematics, 5:4 (1975), 493–542 | DOI | MR | Zbl

[9] Goloviznin V. M., Kiselev V. P., Korotkij I. A., Yurkov Yu. I., Some features of computational algorithms for fractional diffusion equations, Institute for the safe development of nuclear energy of the Russian Academy of Sciences, Moscow, 2002, 57 pp. (in Russian)

[10] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Difference methods for solving boundary value problems for fractional differential equations”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1785–1795 | DOI | MR

[11] Alikhanov A. A., “A priori estimates of solutions of boundary value problems for fractional order equations”, Differential Equations, 46:5 (2010), 660–666 (in Russian) | MR | Zbl

[12] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, Journal of Computational Physics, 2015, no. 280, 424–438 | DOI | MR | Zbl

[13] Beshtokov M. Kh., “Nonlocal boundary value problems for Sobolev-type fractional equations and grid methods for solving them”, Siberian Advances in Mathematics, 29:1 (2019), 1–21 | DOI | MR | MR

[14] Beshtokov M. Kh.Erzhibova.F. A., “On boundary value problems for integro-differential equations of fractional order”, Mathematical Works, 23:1 (2020), 16–36 (in Russian) | MR

[15] Beshtokov M. Kh., Khudalov M. Z., “Difference Methods for Solving Local and Nonlocal Boundary Value Problems for a Loaded Fractional Order Heat Equation”, Stability, Control and Differential Games, Lecture Notes in Control and Information Sciences, Springer, 2020, 187–201 | DOI | MR | Zbl

[16] Samarskij A. A., Theory of Difference Schemes, Nauka Publ., Moscow, 1983, 616 pp. (in Russian) | MR