On a busy period in one-channel queues
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2020), pp. 49-57
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study properties of a busy period of a single server queue, where server enters sleep mode once busy period is finished. When a new job arrives in empty queue, server initializes itself for some time and only then starts to serve jobs. Service time and initialization time have arbitrary continuous distribution, and interarrival times have either Erlang or hyperexponential distribution.
Keywords:
single server queues, busy period, hyperexponential interarrival times
Mots-clés : Erlang interarrival times.
Mots-clés : Erlang interarrival times.
@article{VTPMK_2020_2_a3,
author = {A. V. Mistryukov},
title = {On a busy period in one-channel queues},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {49--57},
year = {2020},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_2_a3/}
}
A. V. Mistryukov. On a busy period in one-channel queues. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2020), pp. 49-57. http://geodesic.mathdoc.fr/item/VTPMK_2020_2_a3/
[1] Matveev V. F., Ushakov V. G., Queuing systems, MSU Publ., Moscow, 1984, 240 pp. (in Russian) | MR
[2] Kleinrock L., Queueing Systems. Theory, v. 1, John Wiley and Sons, New York, 1975 | MR | Zbl
[3] Ushakov V. G., “A queueing system with Erlang incoming flow with relative priority”, Theory of Probability and its Applications, 22:4 (1978), 841–846 | DOI | MR
[4] Mistryukov A. V., Ushakov V. G., “Sufficient ergodicity conditions for queueing systems with non-preemptive priority”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 1, 5–14 (in Russian)