One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2020), pp. 18-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A periodic boundary value problem for the focusing nonlinear Schrodinger equation is considered. This version of the equation has applications in nonlinear optics. The existence of single-phase solutions with the structure of traveling waves is shown. For such solutions, the question of their stability is considered. Three other types of single-phase solutions are found. Asymptotic formulas are obtained for these solutions. It is also shown that these solutions generate three types of already two-phase solutions of the main boundary value problem for the focusing Schrodinger equation. For this, the principle of self-similarity is used. Some results can be applied to the defocusing version of the nonlinear Schrodinger equation.
Keywords: focusing nonlinear Schrodinger equation, periodic value boundary problem, principle of self-similarity, one-phase, two-phase solutions.
@article{VTPMK_2020_2_a1,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {One-phase and two-phase solutions of the focusing nonlinear {Schrodinger} equation},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {18--34},
     year = {2020},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_2_a1/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 18
EP  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_2_a1/
LA  - ru
ID  - VTPMK_2020_2_a1
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 18-34
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_2_a1/
%G ru
%F VTPMK_2020_2_a1
A. N. Kulikov; D. A. Kulikov. One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2020), pp. 18-34. http://geodesic.mathdoc.fr/item/VTPMK_2020_2_a1/

[1] Skott E., Nonlinear science: birth and development of coherent structures, Fizmatlit Publ., Moscow, 2007 (in Russian)

[2] Whitham G. B., Linear and nonlinear waves, A Willey-Interscience Publication, New-York, London, Sydney, Toronto, 1974, 636 pp. | MR | Zbl

[3] Grinevicha P. G., Santinibc P. M., “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Russian Mathematical Surveys, 72:2 (2019), 211–263 | DOI | MR | Zbl

[4] Grinevich P. G., Santini P. M., “Numerical Instability of the Akhmediev Breather and Finite-Gap Model of It”, Springer Proceeding in Mathematics and Statistics, 273 (2016), 3–23 | DOI

[5] Coppini F., Grinevich P. G., Santini P. M., “Effect of a Small Loss Or Gain in the Periodic Nonlinear Schrodinger Anomalous Wave Dynamics”, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 101:3 (2020), 032204 | DOI | MR

[6] Smirnov A. O., “Periodic two-phase “rogue waves””, Mathematical Notes, 94:5-6 (2013), 897–907 | DOI | MR | Zbl

[7] Akhmediev N. N., Korneev V. I., “Modulation instability and periodic solutions of the nonlinear Schrodinger equation”, Theoretical and Mathematical Physics, 69:2 (1986), 1089–1093 | DOI | MR | Zbl

[8] Kuznetsov E. A., “Solutions in parametrically unstable plasma”, Soviet Physics. Doklady, 22 (1977), 507–508

[9] Zakharov V., Ostrovsky L., “Modulation instability: the beginning”, Physica D: Nonlinear Phenomena, 238:5 (2009), 540–548 | DOI | MR | Zbl

[10] Sulem C., Sulem P. -L., The Nonlinear Schrodinger Equation (Self Focusing and Wave Collapse), Springer, Berlin, 1999 | MR | Zbl

[11] Segal I., “Nonlinear semigroups”, Annals of Mathematics, 78:2 (1963), 339–364 | DOI | MR | Zbl

[12] Kulikov A. N., Kulikov D. A., “Local bifurcations of plane running waves for the generalized cubic Schrödinger equation”, Differential Equations, 46:9 (2010), 1299–1308 | DOI | MR | Zbl

[13] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Cylindrical traveling waves for the generalized cubical Schrödinger equation”, Doklady Mathematics, 73:1 (2006), 125–128 | DOI | MR | MR | Zbl

[14] Najfe A., Perturbation methods, Mir Publ., Moscow, 1976 (in Russian)

[15] Najfe A., Introduction to perturbation methods, Mir Publ., Moscow, 1989 (in Russian)

[16] Malkin I. G., Some problems of the theory of nonlinear oscillations, GITTL, Moscow, 1956 (in Russian)