On the solutions of Cauchy problem for quasi-hydrodynamic system
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 84-96
Voir la notice de l'article provenant de la source Math-Net.Ru
The coincidence of bounded in space at arbitrary instant of time homogeneously screw infinitely differentiable solutions of the Cauchy problem for quasi-hydrodynamic system and Navier-Stokes system is proved. It is shown that any smooth solution of Cauchy problem for Navier-Stokes system that obeys the generalized Gromeki-Beltrami condition, as well as some boundedness conditions in space, satisfies to quasi-hydrodynamic system. Examples of solutions are given. The formulation of an unsolved problem is given, in which it is required to prove the existence and uniqueness of a smooth solution of Cauchy problem for the quasi-hydrodynamic system.
Keywords:
Navier-Stokes system, Cauchy problem, homogeneously screw solutions, generalized Gormeki-Beltrami condition.
Mots-clés : quasi-hydrodynamic system
Mots-clés : quasi-hydrodynamic system
@article{VTPMK_2020_1_a5,
author = {Yu. V. Sheretov},
title = {On the solutions of {Cauchy} problem for quasi-hydrodynamic system},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {84--96},
publisher = {mathdoc},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a5/}
}
TY - JOUR AU - Yu. V. Sheretov TI - On the solutions of Cauchy problem for quasi-hydrodynamic system JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2020 SP - 84 EP - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a5/ LA - ru ID - VTPMK_2020_1_a5 ER -
Yu. V. Sheretov. On the solutions of Cauchy problem for quasi-hydrodynamic system. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 84-96. http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a5/