Keywords: homogeneous functions, spherical harmonics, Fourier-Laplace series.
@article{VTPMK_2020_1_a3,
author = {S. V. Arhipov},
title = {The {Laplace} transform of the homogeneous functions in $\mathbb{R}^n$},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {60--71},
year = {2020},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/}
}
TY - JOUR
AU - S. V. Arhipov
TI - The Laplace transform of the homogeneous functions in $\mathbb{R}^n$
JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY - 2020
SP - 60
EP - 71
IS - 1
UR - http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/
LA - ru
ID - VTPMK_2020_1_a3
ER -
S. V. Arhipov. The Laplace transform of the homogeneous functions in $\mathbb{R}^n$. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 60-71. http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/
[1] Arkhipov S. V., “The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 98–107 (in Russian) | DOI
[2] Vladimirov V. S., Drozzinov Yu. N., Zavialov B. I., Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers, Dordrecht, 1988, 292 pp. | MR | MR | Zbl
[3] Gradshtejn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Fizmatlit Publ., Moscow, 1963, 1100 pp. (in Russian) | MR
[4] Kratzer A., Franz W., Transcendent functions, Iz-vo inostrannoj literatury, M., 1963, 467 pp. (in Russian)
[5] Luke Yu., Mathematical functions and their approximations, Mir Publ., Moscow, 1980, 608 pp. (in Russian)
[6] Samko S. G., Hypersingular Integrals and Their Applications, Rostov University Press, Rostov, 1984, 208 pp. (in Russian) | MR
[7] Samko S. G., “Obobshchyonnye rissovy potentsialy i gipersingulyarnye integraly s odnorodnymi kharakteristikami, ikh simvoly i obrashchenie”, Proceedings of the Steklov Institute of Mathematics, 156 (1980), 152–222 (in Russian)
[8] Samko S. G., “Singular integrals over a sphere and construction of characteristics by a symbol”, Izvestiya vysshikh uchebnykh zavedenij. Matematika, 1983, no. 4, 28–42 (in Russian) | Zbl
[9] Muller C., Spherical Harmonics, v. 17, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1966, 45 pp. | DOI | MR | Zbl
[10] Rubin B., Introduction to Radon Transform: with elements of fractional calculations and harmonic analysis, Cambridge University Press, 2015, 576 pp. | MR