The Laplace transform of the homogeneous functions in $\mathbb{R}^n$
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 60-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the one-dimensional case the Laplace transform of power functions relates to tabular integrals. The multidimensional analogue of power functions are homogeneous functions $\theta \left(\tau \right)\left|t\right|^{\alpha }$, where $\alpha$ is the degree of homogeneity and $\theta\left(\tau \right) $ is a function on the unit sphere $S^{n-1}$. For the convergence of the integral, it is necessary to consider the region $\gamma$ lying inside some hemisphere. In calculating the Laplace transform of homogeneous functions, it is necessary to derive an explicit representation. This is achieved by using Fourier analysis on the sphere, as well as summing the integrals applying the kernel of the Fourier transform, which allows us to construct a simple analytic continuation of the hypergeometric functions that appear in the calculations. The article obtains the formulas for the Laplace transform of homogeneous functions for which $\theta\left(\tau \right) $ belongs to different functional spaces on the unit sphere with support $\gamma$.
Mots-clés : multidimensional Laplace transform
Keywords: homogeneous functions, spherical harmonics, Fourier-Laplace series.
@article{VTPMK_2020_1_a3,
     author = {S. V. Arhipov},
     title = {The {Laplace} transform of the homogeneous functions in $\mathbb{R}^n$},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {60--71},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/}
}
TY  - JOUR
AU  - S. V. Arhipov
TI  - The Laplace transform of the homogeneous functions in $\mathbb{R}^n$
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 60
EP  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/
LA  - ru
ID  - VTPMK_2020_1_a3
ER  - 
%0 Journal Article
%A S. V. Arhipov
%T The Laplace transform of the homogeneous functions in $\mathbb{R}^n$
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 60-71
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/
%G ru
%F VTPMK_2020_1_a3
S. V. Arhipov. The Laplace transform of the homogeneous functions in $\mathbb{R}^n$. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 60-71. http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a3/

[1] Arkhipov S. V., “The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 98–107 (in Russian) | DOI

[2] Vladimirov V. S., Drozzinov Yu. N., Zavialov B. I., Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers, Dordrecht, 1988, 292 pp. | MR | MR | Zbl

[3] Gradshtejn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Fizmatlit Publ., Moscow, 1963, 1100 pp. (in Russian) | MR

[4] Kratzer A., Franz W., Transcendent functions, Iz-vo inostrannoj literatury, M., 1963, 467 pp. (in Russian)

[5] Luke Yu., Mathematical functions and their approximations, Mir Publ., Moscow, 1980, 608 pp. (in Russian)

[6] Samko S. G., Hypersingular Integrals and Their Applications, Rostov University Press, Rostov, 1984, 208 pp. (in Russian) | MR

[7] Samko S. G., “Obobshchyonnye rissovy potentsialy i gipersingulyarnye integraly s odnorodnymi kharakteristikami, ikh simvoly i obrashchenie”, Proceedings of the Steklov Institute of Mathematics, 156 (1980), 152–222 (in Russian)

[8] Samko S. G., “Singular integrals over a sphere and construction of characteristics by a symbol”, Izvestiya vysshikh uchebnykh zavedenij. Matematika, 1983, no. 4, 28–42 (in Russian) | Zbl

[9] Muller C., Spherical Harmonics, v. 17, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1966, 45 pp. | DOI | MR | Zbl

[10] Rubin B., Introduction to Radon Transform: with elements of fractional calculations and harmonic analysis, Cambridge University Press, 2015, 576 pp. | MR