Nonparametric estimation for quantile in binary regression models
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we propose a new estimator of the quantile function. It is based on nonparametric modified Reed-Muench estimators of a distribution function $F(x)$ in the binary regression models. Conditions for weak consistency and asymptotic normality are given. We compare the new proposal with some existing methods. Those include the double-kernel technique of Yu and Jones (1998), the adjusted version of the Stute (1986), estimator suggested by Borodina (2019) based on the Nadaraya-Watson type estimators. The Comparison is done by asymptotic mean squared error and asymptotic mean. Our methods also have the practical application, for example to quantile estimation to the work Hayes and Mantel (1958). Calculations on these data are made in Tikhov and Shkileva (2019).
Keywords: dose-effect relationship, quantile function, modified Reed-Muench estimators.
@article{VTPMK_2020_1_a0,
     author = {M. S. Tikhov and K. N. Shkileva},
     title = {Nonparametric estimation for quantile in binary regression models},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--19},
     year = {2020},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a0/}
}
TY  - JOUR
AU  - M. S. Tikhov
AU  - K. N. Shkileva
TI  - Nonparametric estimation for quantile in binary regression models
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2020
SP  - 5
EP  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a0/
LA  - ru
ID  - VTPMK_2020_1_a0
ER  - 
%0 Journal Article
%A M. S. Tikhov
%A K. N. Shkileva
%T Nonparametric estimation for quantile in binary regression models
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2020
%P 5-19
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a0/
%G ru
%F VTPMK_2020_1_a0
M. S. Tikhov; K. N. Shkileva. Nonparametric estimation for quantile in binary regression models. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2020), pp. 5-19. http://geodesic.mathdoc.fr/item/VTPMK_2020_1_a0/

[1] Tikhov M. S., Shkileva K. N., “A modified Reed-Muench method of estimation in dose-effect relationship”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 5–26 (in Russian) | DOI | MR

[2] Natanson I. P., Theory of Functions of a Real Variable, Dover Publications, New York, 2016, 544 pp. | MR | MR

[3] Niederreiter H., Random Number Generation and Quasi-Monte Carlo-Method, SIAM Philadelphia, Pennsylvania, 1992, 241 pp. | MR

[4] Tikhov M. S., “Nonparametric estimation of effective doses at quantal response”, Ufa Mathematical Journal, 5:2 (2013), 94–108 (in Russian) | MR

[5] Smirnov N. V., “Limit distribution laws for members of a variation series”, Proceedings of the Steklov Institute of Mathematics, 49 (1949), 5–60 (in Russian)

[6] Yu K., Jones M., “Local Linear Quantile Regression”, Journal of the American Statistical Association, 93:441 (1998), 228–237 | DOI | MR | Zbl

[7] Stute W., “Conditional Empirical Processes”, Annals of Statistics, 14:2 (1986), 638–647 | DOI | MR | Zbl

[8] Borodina T. S., Construction and studying of the mathematical model of a drug combination in dose-effect relation, dis. ... kand. fiz.-mat. nauk, Nizhnij Novgorod, 2019, 166 pp. (in Russian)

[9] Hayes R. L., Mantel N., “Procedures for computing the mean age of eruption of human teeth”, Journal of Dental Research, 35:5 (1958), 938–947 | DOI