On algorithmic properties of finite subset algebra for some unoids
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 108-116
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider unoids consisting of identical non-branching trees which are connected into an infinite line. We establish that the finite subset algebra admits effective quantifier elimination and it does not depend on the original algebra. So, we have an instance where the finite subset algebra theory is algorithmically simpler than the theory of the original one. Also it demonstrates that the union operation for finite subset algebras does matter for algorithmical properties.
Mots-clés :
unoid, quantifier elimination.
Keywords: non-branching tree, subset algebra
Keywords: non-branching tree, subset algebra
@article{VTPMK_2019_4_a7,
author = {S. M. Dudakov},
title = {On algorithmic properties of finite subset algebra for some unoids},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {108--116},
publisher = {mathdoc},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a7/}
}
TY - JOUR AU - S. M. Dudakov TI - On algorithmic properties of finite subset algebra for some unoids JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2019 SP - 108 EP - 116 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a7/ LA - ru ID - VTPMK_2019_4_a7 ER -
S. M. Dudakov. On algorithmic properties of finite subset algebra for some unoids. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 108-116. http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a7/