The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 98-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			As is well known, the most commonly used functions on a line are powerful functions. A multidimensional analogue of power functions is homogeneous functions, which look like $\theta (\tau )|t|^\alpha$ and have an arbitrary function on a unit sphere additionally to the parameter $\alpha$. The inverse Fourier transform for these functions results in restrictions for an order of $\alpha$. One approach to improve convergence is Abel summation. Abel summation formulas for inverse Fourier transform of homogeneous functions have been derived in the article, which look like $\theta (\tau )|t|^\alpha$, $\tau \in S^{n-1}=\{t \in \mathbb{R}^n: |t|=1\}$ for various function spaces on a unit sphere.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Abel summation formula, homogeneous functions.
Mots-clés : inverse Fourier transform
                    
                  
                
                
                Mots-clés : inverse Fourier transform
@article{VTPMK_2019_4_a6,
     author = {S. V. Arhipov},
     title = {The {Abel} summation of the inverse {Fourier} transform of the homogeneous functions in $R^n$},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {98--107},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/}
}
                      
                      
                    TY - JOUR AU - S. V. Arhipov TI - The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$ JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2019 SP - 98 EP - 107 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/ LA - ru ID - VTPMK_2019_4_a6 ER -
%0 Journal Article %A S. V. Arhipov %T The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$ %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2019 %P 98-107 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/ %G ru %F VTPMK_2019_4_a6
S. V. Arhipov. The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 98-107. http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/
