The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 98-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, the most commonly used functions on a line are powerful functions. A multidimensional analogue of power functions is homogeneous functions, which look like $\theta (\tau )|t|^\alpha$ and have an arbitrary function on a unit sphere additionally to the parameter $\alpha$. The inverse Fourier transform for these functions results in restrictions for an order of $\alpha$. One approach to improve convergence is Abel summation. Abel summation formulas for inverse Fourier transform of homogeneous functions have been derived in the article, which look like $\theta (\tau )|t|^\alpha$, $\tau \in S^{n-1}=\{t \in \mathbb{R}^n: |t|=1\}$ for various function spaces on a unit sphere.
Keywords: Abel summation formula, homogeneous functions.
Mots-clés : inverse Fourier transform
@article{VTPMK_2019_4_a6,
     author = {S. V. Arhipov},
     title = {The {Abel} summation of the inverse {Fourier} transform of the homogeneous functions in $R^n$},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {98--107},
     year = {2019},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/}
}
TY  - JOUR
AU  - S. V. Arhipov
TI  - The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 98
EP  - 107
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/
LA  - ru
ID  - VTPMK_2019_4_a6
ER  - 
%0 Journal Article
%A S. V. Arhipov
%T The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 98-107
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/
%G ru
%F VTPMK_2019_4_a6
S. V. Arhipov. The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 98-107. http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a6/

[1] Arkhipov S. V., Razlozheniya plotnosti strogo ustojchivykh raspredelenij v $\mathbb{R} n$ v sluchae absolyutno nepreryvnoj spektralnoj mery, PhD Thesis, 1989, 102 pp. (in Russian)

[2] Gradshtejn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Fizmatlit Publ., Moscow, 1963, 1100 pp. (in Russian) | MR

[3] Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations, Fizmatlit Publ., Moscow, 1962, 254 pp. (in Russian) | MR

[4] Samko S. G., Hypersingular Integrals and Their Applications, Rostov University Press, Rostov, 1984, 208 pp. (in Russian) | MR

[5] Samko S. G., “Obobshchyonnye rissovy potentsialy i gipersingulyarnye integraly s odnorodnymi kharakteristikami, ikh simvoly i obrashchenie”, Proceedings of the Steklov Institute of Mathematics, 156 (1980), 152–222 (in Russian)

[6] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. (in Russian)

[7] Stejn I., Vejs G., Introduction to Fourier Analysis on Euclidean Spaces, Mir Publ., Moscow, 1974, 333 pp. (in Russian)

[8] Bochner S., Harmonic analysis and the theory of probability, University of California Press, Berkeley, 1955, 176 pp. | MR | Zbl

[9] Lemoine C., “Fourier transforms of homogeneous distributions”, Annali della Scuola normale superiore di Pisa. Classe di scienze, 26:1 (1972), 11–149 | MR

[10] Rubin B., Introduction to Radon Transform: with elements of fractional calculations and harmonic analysis, 2015, 576 pp. | MR