Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 39-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider conditions of relative compactness for a family of measures of Hilbert-valued continuous semimartingales. The conditions are formulated for a triplet of local characteristics of a semimartingale, which is uniquely determined from a semimartingale.
Keywords: semimartingale, Hilbert space, compactness of measures, stochastically continuous processes.
@article{VTPMK_2019_4_a2,
     author = {V. V. Lavrentyev and A. L. Bugrimov},
     title = {Compactness conditions for a family of measures of {Hilbert-valued} continuous semi-martingales},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {39--51},
     year = {2019},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/}
}
TY  - JOUR
AU  - V. V. Lavrentyev
AU  - A. L. Bugrimov
TI  - Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 39
EP  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/
LA  - ru
ID  - VTPMK_2019_4_a2
ER  - 
%0 Journal Article
%A V. V. Lavrentyev
%A A. L. Bugrimov
%T Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 39-51
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/
%G ru
%F VTPMK_2019_4_a2
V. V. Lavrentyev; A. L. Bugrimov. Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 39-51. http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/

[1] Liptser R. Sh., Shiryaev A. N., “On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments”, Mathematics of the USSR-Sbornik, 44:3 (1983), 299–323 | DOI | MR | Zbl | Zbl

[2] Liptser R. Sh., Shiryaev A. N., Theory of martingales, Mathematics and its Applications (Soviet Series), v. 49, Kluwer Academic Publishers Group, Dordrecht, 1989, 792 pp. | MR | MR

[3] Prokhorov Yu. V., “Convergence of Random Processes and Limit Theorems in Probability Theory”, Theory of Probability and its Applications, v. 1, Torus Press, Moscow, 1956, 157–214 | DOI | MR

[4] Lavrentyev V. V., Nazarov L. V., “Conditions of the compactness for family of measures of Hilbert-valued martingales”, Herald of Tver State University. Series: Applied Mathematics, 2015, no. 2, 67–73 (in Russian)

[5] Lavrentyev V. V., “On the structure of Hilbert-valued martingales”, Herald of Tver State University. Series: Applied Mathematics, 2010, no. 2, 13–19 (in Russian)

[6] Lavrentyev V. V., “Canonical representation of Hilbert-valued semi-martingales”, Herald of Tver State University. Series: Applied Mathematics, 2011, no. 1, 123–130 (in Russian)

[7] Meyer P. A., “Notes sur les integrales stochastiques. I Integrales Hilbertiennes”, Lecture Notes in Mathematics, 581 (1977), 446–462 | DOI | MR | Zbl

[8] Lenglart E., “Relation de domination entre deux pricessus”, Annales de l'Institut Henri Poincare. Section B: Probabilites et Statistiques, 13:2 (1977), 171–179 | MR | Zbl

[9] Grigelionis B. I., Mikulevicius R., “On the weak convergence of semi-martingales”, Litovskij matematicheskij sbornik, 21:3 (1981), 9–24 (in Russian) | MR | Zbl

[10] Aldous D. J., “A characterisatian of Hilbert space using the central limit theorem”, Journal of the London Mathematical Society, 14:2 (1976), 376–380 | DOI | MR | Zbl

[11] Metivier M., Pellaumail J., Stochastic integration, Academic Press, New York, 1980, 196 pp. | MR | Zbl

[12] McLeish D. L., “An extended martingale invariance principle”, Annals of Probability, 6:1 (1978), 144–150 | DOI | MR | Zbl