@article{VTPMK_2019_4_a2,
author = {V. V. Lavrentyev and A. L. Bugrimov},
title = {Compactness conditions for a family of measures of {Hilbert-valued} continuous semi-martingales},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {39--51},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/}
}
TY - JOUR AU - V. V. Lavrentyev AU - A. L. Bugrimov TI - Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2019 SP - 39 EP - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/ LA - ru ID - VTPMK_2019_4_a2 ER -
%0 Journal Article %A V. V. Lavrentyev %A A. L. Bugrimov %T Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2019 %P 39-51 %N 4 %U http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/ %G ru %F VTPMK_2019_4_a2
V. V. Lavrentyev; A. L. Bugrimov. Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2019), pp. 39-51. http://geodesic.mathdoc.fr/item/VTPMK_2019_4_a2/
[1] Liptser R. Sh., Shiryaev A. N., “On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments”, Mathematics of the USSR-Sbornik, 44:3 (1983), 299–323 | DOI | MR | Zbl | Zbl
[2] Liptser R. Sh., Shiryaev A. N., Theory of martingales, Mathematics and its Applications (Soviet Series), v. 49, Kluwer Academic Publishers Group, Dordrecht, 1989, 792 pp. | MR | MR
[3] Prokhorov Yu. V., “Convergence of Random Processes and Limit Theorems in Probability Theory”, Theory of Probability and its Applications, v. 1, Torus Press, Moscow, 1956, 157–214 | DOI | MR
[4] Lavrentyev V. V., Nazarov L. V., “Conditions of the compactness for family of measures of Hilbert-valued martingales”, Herald of Tver State University. Series: Applied Mathematics, 2015, no. 2, 67–73 (in Russian)
[5] Lavrentyev V. V., “On the structure of Hilbert-valued martingales”, Herald of Tver State University. Series: Applied Mathematics, 2010, no. 2, 13–19 (in Russian)
[6] Lavrentyev V. V., “Canonical representation of Hilbert-valued semi-martingales”, Herald of Tver State University. Series: Applied Mathematics, 2011, no. 1, 123–130 (in Russian)
[7] Meyer P. A., “Notes sur les integrales stochastiques. I Integrales Hilbertiennes”, Lecture Notes in Mathematics, 581 (1977), 446–462 | DOI | MR | Zbl
[8] Lenglart E., “Relation de domination entre deux pricessus”, Annales de l'Institut Henri Poincare. Section B: Probabilites et Statistiques, 13:2 (1977), 171–179 | MR | Zbl
[9] Grigelionis B. I., Mikulevicius R., “On the weak convergence of semi-martingales”, Litovskij matematicheskij sbornik, 21:3 (1981), 9–24 (in Russian) | MR | Zbl
[10] Aldous D. J., “A characterisatian of Hilbert space using the central limit theorem”, Journal of the London Mathematical Society, 14:2 (1976), 376–380 | DOI | MR | Zbl
[11] Metivier M., Pellaumail J., Stochastic integration, Academic Press, New York, 1980, 196 pp. | MR | Zbl
[12] McLeish D. L., “An extended martingale invariance principle”, Annals of Probability, 6:1 (1978), 144–150 | DOI | MR | Zbl