Estimation of the Hurst exponent in the mixed traffic models
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2019), pp. 20-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the problem of the Hurst parameter estimation for the input flow generated by the composition of independent fractal browian motion and $\alpha$-stable Lévy motion. We use the time-frequency decomposition of the process by Haar wavelet and apply the weighted least square regression to the sum of logarithms of the wavelet-coefficients absolute values. Proposed method does't require any additional corrections neither dependent variable nor octave's number $j$ (factor variable) and provides an asymptotically efficient estimation. Several simulated examples are used for its illustration.
Keywords: long-range dependence, heavy-tailed distributions, fractal brownian noise, Hurst parameter, weighted least square regression.
Mots-clés : $\alpha$-stable Lévy motion
@article{VTPMK_2019_3_a1,
     author = {O. I. Sidorova and Yu. S. Khokhlov},
     title = {Estimation of the {Hurst} exponent in the mixed traffic models},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {20--39},
     year = {2019},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a1/}
}
TY  - JOUR
AU  - O. I. Sidorova
AU  - Yu. S. Khokhlov
TI  - Estimation of the Hurst exponent in the mixed traffic models
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 20
EP  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a1/
LA  - ru
ID  - VTPMK_2019_3_a1
ER  - 
%0 Journal Article
%A O. I. Sidorova
%A Yu. S. Khokhlov
%T Estimation of the Hurst exponent in the mixed traffic models
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 20-39
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a1/
%G ru
%F VTPMK_2019_3_a1
O. I. Sidorova; Yu. S. Khokhlov. Estimation of the Hurst exponent in the mixed traffic models. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2019), pp. 20-39. http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a1/

[1] Abry P., Sellan F., “The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation”, Applied and Computational Harmonic Analysis, 3:4 (1996), 377–383 | DOI | MR | Zbl

[2] Crovella M., Bestavros A., “Self-similarity in world wide web traffic: evidence and possible cases”, Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and Modelling of Computer Systems, v. 4, 1996, 160–169 | DOI

[3] Crovella M., Kim G., Park K., “On the relationship between file sizes, transport protocols, and self-similar network traffic”, Proceedings of the Fourth International Conference on Network Protocols, ICNP’96, 1996, 171–180

[4] Galaktionova O. V., Khokhlov Yu. S., “A new teletraffic model that combines stable Levy motion and fractional Brownian motion”, Herald of Tver State University. Series: Applied Mathematics, 2006, no. 4 (21), 163–167 (in Russian)

[5] Goncharov B. A., Sidorova O. I., Khokhlov Yu. S., “Performance estimation in nonhomogeneous traffic models”, Herald of Tver State University. Series: Applied Mathematics, 2018, no. 4, 50–63 (in Russian) | DOI

[6] Khokhlov Yu. S., Lukashenko O. V., Morozov E. V., “On a lower asymptotic bound of the overflow probability in a fluid queue with a heterogeneous fractional input”, Journal of Mathematical Sciences, 237:5 (2019), 667–672 | DOI | MR | Zbl

[7] Leland W. E., Taqqu M. S., Willinger W., Willson D. V., “On the self-similar nature of Ethernet traffic (Extended version)”, IEEE/ACM Transactions on Networking, 2 (1994), 1–15 | DOI

[8] Mikosch Th., Resnick S., Rootzen H., Stegeman A., “Is network traffic approximated by stable Levy motion or fractional Brownian motion?”, Annals of Applied Probability, 12:1 (2002), 23–68 | DOI | MR | Zbl

[9] Korolev V. Yu., “Product representation for random variables with Weibul distribution and their application”, Journal of Mathematical Sciences, 218:3 (2016), 298–313 | DOI | MR | Zbl

[10] Park J., Park C., “Robust estimation of the Hurst parameter and selection of an onset scaling”, Statistica Sinica, 19 (2009), 1531–1555 | MR | Zbl

[11] Samorodnitsky G., Taqqu M. S., Stable Non–Gaussian Random Processes, Chapman and Hall, 1994 | MR | Zbl

[12] Sarvotham S., Riedi R., Baraniuk R., “Connection-level Analysis and Modeling of Network Traffic”, Proceedings of the 1st ACM SIGCOMM Workshop on Internet measurement, IMW '01 (San Francisco, California, USA), 2001, 99–103 | DOI

[13] Stoev S., Taqqu M., “Wavelet estimation for the Hurst parameter in stable processes”, Processes with long-range correlations: theory and applications, eds. G. Rangarajan, M. Ding, Springer-Verlag, Berlin, 2003, 61–87 | DOI | MR

[14] Taqqu M., Willinger W., Sherman R., “Proof of a fundamental result in self-similar traffic modeling”, Computer Communications Review, 27:2 (1997), 5–23 | DOI

[15] Veitch D., Abry P., “A wavelet-based joint estimator of the parameters of long-range dependence”, IEEE Transactions on Information Theory, 45:3 (1999), 878–897 | DOI | MR | Zbl

[16] Weron R., “On the Chambers-Mallows-Stuck method for simulating skewed stable random variables”, Statistics Probability Letters, 28 (1996), 165–171 | DOI | MR | Zbl

[17] Wang Y., “Function estimation via wavelet shrinkage for long-memory data”, Annals of Statistics, 24:2 (1996), 466–484 | DOI | MR | Zbl

[18] Zolotarev V. M., One-dimensional stable distributions, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1986 | MR | Zbl