On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2019), pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For quasi-hydrodynamic system, describing the motions of weakly compressible viscous fluid, the main initial-boundary problem is posed. It is shown that there are no nonequilibrium solutions to this problem with irrotational solenoidal velocity field. For quasi-hydrodynamic system some new energy equalities and inequalities are derived. Its dissipative properties are investigated. The additional conservation law is obtained. The corresponding integral invariant is constructed.
Mots-clés : quasi-hydrodynamic system, intergal invariants
Keywords: Navier-Stokes equations, dissipative properties, vortex flows.
@article{VTPMK_2019_3_a0,
     author = {Yu. V. Sheretov},
     title = {On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--19},
     year = {2019},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 5
EP  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/
LA  - ru
ID  - VTPMK_2019_3_a0
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 5-19
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/
%G ru
%F VTPMK_2019_3_a0
Yu. V. Sheretov. On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2019), pp. 5-19. http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/

[1] Lojtsyanskij L. G., Fluid and Gas Mechanics, Nauka Publ., Moscow, 1987, 840 pp. (in Russian)

[2] Sheretov Yu. V., “On uniqueness of the solutions for one dissipative system of hydrodynamic type”, Mathematical Modeling, 6:10 (1994), 35–45 (in Russian) | MR | Zbl

[3] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)

[4] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)

[5] Sheretov Yu. V., “Exact solutions of quasi-hydrodynamic system on the base of Biot-Savart formula”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 1, 38–49 (in Russian) | DOI

[6] Mikhajlov V. P., Partial Differential Equations, Nauka Publ., Moscow, 1976, 391 pp. (in Russian)

[7] Rektoris K., Variational methods in mathematical physics and technology, Mir Publ., Moscow, 1985, 589 pp. (in Russian)

[8] Serrin Dzh., Mathematical foundations of classical fluid mechanics, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2001, 256 pp. (in Russian)

[9] Cheviakov A. F., Oberlack M., “Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier-Stokes”, Journal of Fluid Mechanics, 760 (2014), 368–386 | DOI | MR | Zbl