Keywords: Navier-Stokes equations, dissipative properties, vortex flows.
@article{VTPMK_2019_3_a0,
author = {Yu. V. Sheretov},
title = {On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--19},
year = {2019},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/}
}
TY - JOUR AU - Yu. V. Sheretov TI - On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2019 SP - 5 EP - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/ LA - ru ID - VTPMK_2019_3_a0 ER -
%0 Journal Article %A Yu. V. Sheretov %T On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2019 %P 5-19 %N 3 %U http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/ %G ru %F VTPMK_2019_3_a0
Yu. V. Sheretov. On the properties of solutions of main initial-boundary value problem for quasi-hydrodynamic equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2019), pp. 5-19. http://geodesic.mathdoc.fr/item/VTPMK_2019_3_a0/
[1] Lojtsyanskij L. G., Fluid and Gas Mechanics, Nauka Publ., Moscow, 1987, 840 pp. (in Russian)
[2] Sheretov Yu. V., “On uniqueness of the solutions for one dissipative system of hydrodynamic type”, Mathematical Modeling, 6:10 (1994), 35–45 (in Russian) | MR | Zbl
[3] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)
[4] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)
[5] Sheretov Yu. V., “Exact solutions of quasi-hydrodynamic system on the base of Biot-Savart formula”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 1, 38–49 (in Russian) | DOI
[6] Mikhajlov V. P., Partial Differential Equations, Nauka Publ., Moscow, 1976, 391 pp. (in Russian)
[7] Rektoris K., Variational methods in mathematical physics and technology, Mir Publ., Moscow, 1985, 589 pp. (in Russian)
[8] Serrin Dzh., Mathematical foundations of classical fluid mechanics, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2001, 256 pp. (in Russian)
[9] Cheviakov A. F., Oberlack M., “Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier-Stokes”, Journal of Fluid Mechanics, 760 (2014), 368–386 | DOI | MR | Zbl