On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2019), pp. 88-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the study of the solvability of the inverse boundary value problem with an unknown time depended coefficient for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition. The problem is firstly reduced to the problem that is in a sense quivalent to the original. Then, the Fourier mathod is applied, reducing the problem to solution of a system of integral equations. The existence and uniqueness of the latter equation is proved by the contraction mapping principle, which also yoelds the unique solution of the equivalent problem. Using equivalence, we finally prove the unique existence of a classical solution of the problem under consideration.
Keywords: inverse boundary problem, third-order equations, Fourier method, classical solution.
@article{VTPMK_2019_2_a5,
     author = {Ya. T. Megraliev and U. S. Alhzade},
     title = {On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {88--106},
     year = {2019},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/}
}
TY  - JOUR
AU  - Ya. T. Megraliev
AU  - U. S. Alhzade
TI  - On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 88
EP  - 106
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/
LA  - ru
ID  - VTPMK_2019_2_a5
ER  - 
%0 Journal Article
%A Ya. T. Megraliev
%A U. S. Alhzade
%T On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 88-106
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/
%G ru
%F VTPMK_2019_2_a5
Ya. T. Megraliev; U. S. Alhzade. On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2019), pp. 88-106. http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/

[1] Tikhonov A. N., “On the stability of inverse problems”, Soviet Mathematics. Doklady, 39:4 (1943), 195–198 (in Russian)

[2] Lavrentev M. M., “On the stability of inverse problems for a single inverse problem for the wave equation”, Soviet Mathematics. Doklady, 157:3 (1964), 520–521 (in Russian) | Zbl

[3] Lavrentev M. M., Romanov V. G., Shishatskij S. T., Incorrect problems of mathematical physics and analysis, Nauka Publ., Moscow, 1980, 288 pp. (in Russian) | MR

[4] Ivanov V. K., Vasin V. V., Tanina V. P., The theory of linear ill-posed problems and its applications, Nauka Publ., Moscow, 1978, 206 pp. (in Russian)

[5] Denisov A. M., Introduction to the theory of inverse problems, MSU Publ., Moscow, 1994, 206 pp. (in Russian) | MR

[6] Samarskij A. A., “On some problems of the theory of differential equations”, Differential Equations, 16:11 (1980), 1925–1935 (in Russian) | MR

[7] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 5:21 (1963), 155–160 | DOI | MR

[8] Ionkin N. I., “Solution of a boundary-value problem of the theory of heat conduction with a nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (in Russian) | MR | Zbl

[9] Nakhushev A. M., “An approximate method for solving boundary value problems for differential equations and its approximation to the dynamics of soil moisture and groundwater”, Differential Equations, 18:1 (1982), 72–81 (in Russian) | MR | Zbl

[10] Varlamov V. V., “On the fundamental solution of a single equation describing the propagation of longitudinal waves in a dispersing medium”, USSR Computational Mathematics and Mathematical Physics, 27:4 (1987), 629–633 (in Russian) | MR | Zbl

[11] Budak B. M., Samarskij A. A., Tikhonov A. N., Problems in mathematical physics, Nauka Publ., Moscow, 1972, 668 pp. (in Russian) | MR

[12] Megraliev Ya. T., “On solvability an inverse value problem for elliptic equation for the second order”, Herald of Tver State University. Series: Applied Mathematics, 2011, no. 23, 25–38 (in Russian)