@article{VTPMK_2019_2_a5,
author = {Ya. T. Megraliev and U. S. Alhzade},
title = {On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {88--106},
year = {2019},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/}
}
TY - JOUR AU - Ya. T. Megraliev AU - U. S. Alhzade TI - On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2019 SP - 88 EP - 106 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/ LA - ru ID - VTPMK_2019_2_a5 ER -
%0 Journal Article %A Ya. T. Megraliev %A U. S. Alhzade %T On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2019 %P 88-106 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/ %G ru %F VTPMK_2019_2_a5
Ya. T. Megraliev; U. S. Alhzade. On solvability an inverse value problem for the equation of the third order describing the propagation of longitudinal waves in a dispersive medium with integral condition. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2019), pp. 88-106. http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a5/
[1] Tikhonov A. N., “On the stability of inverse problems”, Soviet Mathematics. Doklady, 39:4 (1943), 195–198 (in Russian)
[2] Lavrentev M. M., “On the stability of inverse problems for a single inverse problem for the wave equation”, Soviet Mathematics. Doklady, 157:3 (1964), 520–521 (in Russian) | Zbl
[3] Lavrentev M. M., Romanov V. G., Shishatskij S. T., Incorrect problems of mathematical physics and analysis, Nauka Publ., Moscow, 1980, 288 pp. (in Russian) | MR
[4] Ivanov V. K., Vasin V. V., Tanina V. P., The theory of linear ill-posed problems and its applications, Nauka Publ., Moscow, 1978, 206 pp. (in Russian)
[5] Denisov A. M., Introduction to the theory of inverse problems, MSU Publ., Moscow, 1994, 206 pp. (in Russian) | MR
[6] Samarskij A. A., “On some problems of the theory of differential equations”, Differential Equations, 16:11 (1980), 1925–1935 (in Russian) | MR
[7] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quarterly of Applied Mathematics, 5:21 (1963), 155–160 | DOI | MR
[8] Ionkin N. I., “Solution of a boundary-value problem of the theory of heat conduction with a nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (in Russian) | MR | Zbl
[9] Nakhushev A. M., “An approximate method for solving boundary value problems for differential equations and its approximation to the dynamics of soil moisture and groundwater”, Differential Equations, 18:1 (1982), 72–81 (in Russian) | MR | Zbl
[10] Varlamov V. V., “On the fundamental solution of a single equation describing the propagation of longitudinal waves in a dispersing medium”, USSR Computational Mathematics and Mathematical Physics, 27:4 (1987), 629–633 (in Russian) | MR | Zbl
[11] Budak B. M., Samarskij A. A., Tikhonov A. N., Problems in mathematical physics, Nauka Publ., Moscow, 1972, 668 pp. (in Russian) | MR
[12] Megraliev Ya. T., “On solvability an inverse value problem for elliptic equation for the second order”, Herald of Tver State University. Series: Applied Mathematics, 2011, no. 23, 25–38 (in Russian)