Automorphisms of some finite magmas with an order strictly less than the number N(N+1) and a generating set of N elements
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2019), pp. 70-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the problems of describing automorphism groups of certain finite magmas. Some finite magmas $\mathfrak{G} = (V,*)$, generated by $n$ elements and order $|V| $, satisfying the inequalities $n+1 \le | V |. Constructed magmas $\mathfrak{G}$ are not semigroups or quasigroups. For the magmas $\mathfrak{G}$, the general form of the automorphism is indicated and the description of the group of all automorphisms is given. It is shown that the group of all automorphisms is isomorphic to a certain subgroup (the description of this group is given) of the symmetric permutation group $S_n$, where $n$ is the number of elements of a suitable generating set of the magma $\mathfrak{G}$. It is proved that every finite cyclic group of order $n\ge 2$ is isomorphic to the group of all automorphisms of the appropriate magma $\mathfrak{G}$. A similar result was obtained for the fourth Klein group. In addition, it was shown that for any finite group $G$ you can choose a suitable magma $\mathfrak{G}$ such that $G$ is isomorphic to some subgroup of $Aut (\mathfrak{G})$ (an algorithm for constructing magma is given $\mathfrak{G}$ for an arbitrary finite group $G$).
Keywords: magmas, finite magma automorphisms, finite groupoid automorphisms, finite cyclic group, Dihedron group.
Mots-clés : groupoids
@article{VTPMK_2019_2_a4,
     author = {A. V. Litavrin},
     title = {Automorphisms of some finite magmas with an order strictly less than the number {N(N+1)} and a generating set of {N} elements},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {70--87},
     year = {2019},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a4/}
}
TY  - JOUR
AU  - A. V. Litavrin
TI  - Automorphisms of some finite magmas with an order strictly less than the number N(N+1) and a generating set of N elements
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 70
EP  - 87
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a4/
LA  - ru
ID  - VTPMK_2019_2_a4
ER  - 
%0 Journal Article
%A A. V. Litavrin
%T Automorphisms of some finite magmas with an order strictly less than the number N(N+1) and a generating set of N elements
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 70-87
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a4/
%G ru
%F VTPMK_2019_2_a4
A. V. Litavrin. Automorphisms of some finite magmas with an order strictly less than the number N(N+1) and a generating set of N elements. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2019), pp. 70-87. http://geodesic.mathdoc.fr/item/VTPMK_2019_2_a4/

[1] Plotkin B. I., Automorphism groups of algebraic systems, Nauka Publ., Moscow, 1966 (in Russian) | MR

[2] Litavrin A. V., “Automorphisms of some magmas of order $k + k^2$”, Bulletin of the Irkutsk State University. Series: Mathematics, 26 (2018), 47–61 (in Russian) | MR | Zbl

[3] Schreier O., “Die Automorphismen der projektiven Gruppen”, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 6 (1928), 303–322 | DOI | MR | Zbl

[4] Merzlyakov Yu. I., Automorphisms of classical groups, Mir Publ., Moscow, 1976 (in Russian)

[5] Hahn A. J., James A. J., Hahn D. G., Weisfeiler B., “Homomorphisms of algebraic and classical groups: a survey”, Canadian Journal of Mathematics, 1984, no. 4, 249–296 | MR | Zbl

[6] Petechuk V. M., “Automorphisms of matrix groups over commutative ring”, Mathematics of the USSR-Sbornik, 45:4 (1983), 527–542 | DOI | MR | MR | Zbl | Zbl

[7] Abe E., “Automorphisms of Chevalley groups over commutative rings”, Algebra and Analysis, 5:2 (1993), 74–90 | MR | Zbl

[8] Gibbs J., “Automorphisms of certain unipotent groups”, Journal of Algebra, 14:2 (1970), 203–228 | DOI | MR | Zbl

[9] Levchuk V. M., “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra and logic, 29:2 (1990), 141–161 (in Russian) | MR | Zbl

[10] Levchuk V. M., “Connections of the unitriangular group with some rings. Part 2. Automorphism groups”, Siberian Mathematical Journal, 24:4 (1983), 543–557 (in Russian) | MR | Zbl

[11] Bunina E. I., “Automorphisms of Chevalley groups of different types over commutative rings”, Journal of Algebra, 355:1 (2012), 154–170 | DOI | MR | Zbl

[12] Gluskin L. M., “Automorphisms of multiplicative semigroups of matrix algebras”, Russian Mathematical Surveys, 11:1 (1956), 199–206 (in Russian) | MR | Zbl

[13] Mikhalev A. V., Shatalova M. A., “Automorphisms and anti-automorphisms of a semigroup of invertible matrices with nonnegative elements”, Mathematics of the USSR-Sbornik, 10:4 (1970), 547–555 | DOI | MR | Zbl

[14] Bunina E. I., Semenov P. P., “Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings”, Fundamental and Applied Mathematics, 14:2 (2008), 69–100 (in Russian)

[15] Khalezov E. A., “Automorphisms of matrix semigroups”, Soviet Mathematics. Doklady, 96:2 (1954), 245–248 (in Russian) | MR

[16] Khalezov E. A., “Automorphisms of primitive quasigroups”, Sbornik: Mathematics, 53:3 (1961), 329–342 (in Russian) | MR | Zbl

[17] Ilinykh A. P., “Classification of finite groupoids with 2 transitive automorphism groups”, Sbornik: Mathematics, 185:6 (1994), 51–78 (in Russian) | Zbl

[18] Ilinykh A. P., “Groupoids of order $q(q ±1)/2, q=2r$ with automorphism group isomorphic to SL (2, q)”, Siberian Mathematical Journal, 36:6 (1995), 1336–1341 (in Russian) | MR | Zbl

[19] Maltsev A. I., Algebraic systems, Nauka Publ., Moscow, 1970 (in Russian)