Sufficient ergodicity conditions for queueing systems with non-preemptive priority
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2019), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Known results in ergodicity of priority queues are based on the assumption, that interarrival times in each queue have exponential distribution. This paper relaxes this assumption, providing sufficient conditions for queues with two priority classes under assumption, that interarrival times in high priority class queue have hyperexponential distribution. Queues with non-preemptive priority are considered. To formulate desired conditions, we use Lindley's recursion for waiting times of each priority class queue. Using Lyapunov-Foster criteria, we obtain sufficient conditions for given recursion to be Harris-ergodic markov chain.
Keywords: nonpreemtive queues, hyperexponential interarrival times, ergodicity, Lyapunov-Foster criteria, Lindley recursion.
@article{VTPMK_2019_1_a0,
     author = {A. V. Mistryukov and V. G. Ushakov},
     title = {Sufficient ergodicity conditions for queueing systems with non-preemptive priority},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--14},
     year = {2019},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2019_1_a0/}
}
TY  - JOUR
AU  - A. V. Mistryukov
AU  - V. G. Ushakov
TI  - Sufficient ergodicity conditions for queueing systems with non-preemptive priority
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2019
SP  - 5
EP  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2019_1_a0/
LA  - ru
ID  - VTPMK_2019_1_a0
ER  - 
%0 Journal Article
%A A. V. Mistryukov
%A V. G. Ushakov
%T Sufficient ergodicity conditions for queueing systems with non-preemptive priority
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2019
%P 5-14
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2019_1_a0/
%G ru
%F VTPMK_2019_1_a0
A. V. Mistryukov; V. G. Ushakov. Sufficient ergodicity conditions for queueing systems with non-preemptive priority. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2019), pp. 5-14. http://geodesic.mathdoc.fr/item/VTPMK_2019_1_a0/

[1] Mistryukov A. V., Ushakov V. G., “Sufficient conditions for the ergodicity of priority systems of mass service”, Informatika i ee Primeneniya, 12:2 (2018), 24–26 (in Russian)

[2] Matveev V. F., Ushakov V. G., Queuing systems, MSU Publ., Moscow, 1984, 240 pp. (in Russian) | MR

[3] Borovkov A., Ergodicity and steadiness of random processes, Editorial URSS Publ., Moscow, 1999 (in Russian) | MR

[4] Meyn S., Tweedie R., Markov Chains and Stochastic Stability, Communications and Control Engineering, eds. B.W. Dickinson, E.D. Sontag, M. Thoma, A. Fettweis, J.L. Massey, J.W. Modestino, Springer-Verlag, London, 1993 | DOI | MR | Zbl

[5] Gnedenko B. V., Danielyan E. A., Dimitrov B. N., Klimov G. P., Matveev V. F., Priority Service Systems, MSU Publ., Moscow, 1973, 448 pp. (in Russian)