Keywords: computational complexity, decidability, Kripke semantics.
@article{VTPMK_2018_4_a6,
author = {M. N. Rybakov},
title = {Algorithmical properties of quasinormal modal logics with linear finite model property},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {87--97},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a6/}
}
TY - JOUR AU - M. N. Rybakov TI - Algorithmical properties of quasinormal modal logics with linear finite model property JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2018 SP - 87 EP - 97 IS - 4 UR - http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a6/ LA - ru ID - VTPMK_2018_4_a6 ER -
%0 Journal Article %A M. N. Rybakov %T Algorithmical properties of quasinormal modal logics with linear finite model property %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2018 %P 87-97 %N 4 %U http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a6/ %G ru %F VTPMK_2018_4_a6
M. N. Rybakov. Algorithmical properties of quasinormal modal logics with linear finite model property. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2018), pp. 87-97. http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a6/
[1] Zakharyashchev M. V., Popov S. V., On the power of countermodels of intuitionistic calculus, Preprint IPI AN SSSR, 1980 (in Russian)
[2] Kuznetsov A. V., “O sredstvakh obnaruzheniya nevyvodimosti ili nevyrazimosti”, Inference, Nauka Publ., Moscow, 1979, 5–33 (in Russian)
[3] Chagrov A. V., “O slozhnosti propozitsionalnykh logik”, The complexity problems of mathematical logic, KSU Publ., Kalinin, 1985, 80–90 (in Russian)
[4] Chagrov A., Zakharyaschev M., Modal Logic, Oxford University Press, Oxford, 1997 | MR | Zbl
[5] Kuznetsov A. V., “On Superintuitionistic Logics”, Proceedings of the International Congress of Mathematicians (Vancouver, 1975), 243–249 | MR | Zbl
[6] Ladner R. E., “The computational complexity of provability in systems of modal propositional logic”, SIAM Journal on Computing, 6:3 (1977), 467–480 | DOI | MR | Zbl
[7] Segerberg K., An Essey in Classical Modal Logic, Uppsala, 1971 | MR
[8] Sistla A. P., Clarke E. M., “The complexity of propositional linear temporal logics”, Journal of the ACM, 32:3 (1985), 733–749 | DOI | MR | Zbl
[9] Spaan E., Complexity of modal logics, PhD thesis, 1993 | MR
[10] Statman R., “Intuitionistic propositional logic is polynomial-space complete”, Theoretical Computer Science, 9 (1979), 67–72 | DOI | MR | Zbl
[11] Zakharyaschev M., Wolter F., Chagrov A., “Advanced Modal Logic”, Handbook of Philosophical Logic, v. 3, 2nd edition, eds. D.M. Gabbay, F. Guenthner, Springer, Netherlands, 2001, 83–266 | DOI | MR