Performance estimation in nonhomogeneous traffic models
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2018), pp. 50-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The last few decades reveal a steady interest in traffic models based on self-similar processes. The Fractal Brownian motion (beta-traffic, low connection speed) and $\alpha$-stable Levy process ($\alpha$-traffic, high connection speed) are quite flexible and convenient tools for modeling the system load. Currently, the properties of «pure» processes including their influence on different performance measures in multiservice networks are well studied. But the compound traffic models based on both components are practically not analysed at all. Estimation of the QoS characteristics for such models is a new and a very nontrivial problem. In this paper we analyse the nonhomogenous traffic model based on sum of independent Fractional Brownian motion and symmetric $\alpha$-stable Levy process with different Hurst exponents $H_1$ and $H_2$. For such model we find asymptotical lower bound for the overflow probability when the size of buffer $b\to \infty$.
Keywords: nonhomogeneous teletraffic models, quality of service estimation, overflow probability.
@article{VTPMK_2018_4_a3,
     author = {B. A. Goncharov and O. I. Sidorova and Yu. S. Khokhlov},
     title = {Performance estimation in nonhomogeneous traffic models},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {50--63},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a3/}
}
TY  - JOUR
AU  - B. A. Goncharov
AU  - O. I. Sidorova
AU  - Yu. S. Khokhlov
TI  - Performance estimation in nonhomogeneous traffic models
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 50
EP  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a3/
LA  - ru
ID  - VTPMK_2018_4_a3
ER  - 
%0 Journal Article
%A B. A. Goncharov
%A O. I. Sidorova
%A Yu. S. Khokhlov
%T Performance estimation in nonhomogeneous traffic models
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 50-63
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a3/
%G ru
%F VTPMK_2018_4_a3
B. A. Goncharov; O. I. Sidorova; Yu. S. Khokhlov. Performance estimation in nonhomogeneous traffic models. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2018), pp. 50-63. http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a3/

[1] Embrechts P., Maejima M., Selfsimilar Process, Prinston University Press, 2002 | MR

[2] Leland W., Taqqu M., Willinger W., Wilson D., “On the selfsimilar nature of Ethernet traffic (extended version)”, IEEE/ACM Transactions on Networking, 2:1 (1994), 1–15 | DOI | MR

[3] Matache M. T., Matache V., “Queueing systems for multiple FBM–based traffic models”, The ANZIAM Journal, 46:3 (2005), 361–377 | DOI | MR | Zbl

[4] Mikosch Th., Resnick S., Rootzen H., Stegeman A., “Is network traffic approximated by stable Levy motion or fractional Brownian motion?”, Annals of Applied Probability, 12:1 (2002), 23–68 | DOI | MR | Zbl

[5] Norros I., “A storage model with self–similar input”, Queueing Systems, 16 (1994), 387–396 | DOI | MR | Zbl

[6] Samorodnitsky G., Taqqu M. S., Stable Non–Gaussian Random Processes, Chapman and Hall, 1994 | MR | Zbl

[7] Sarvotham S., Riedi R., Baraniuk R., Connection-level Analysis and Modeling of Network Traffic, Technical Report, Department of Electrical and Computer Engineering, Rice University, 2001

[8] Sarvotham S., Riedi R., Baraniuk R., “Connection-level Analysis and Modeling of Network Traffic”, Proceedings of the 1st ACM SIGCOMM Workshop on Internet measurement, IMW '01 (San Francisco, California, USA), 2001, 99–103 | DOI

[9] Zolotarev V. M., One-dimensional stable distributions, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1986 | MR | Zbl

[10] Breiman L., “On some limit theorems similar to the arc-sin law”, Theory of Probability and its Applications, 10:2 (1965), 323–331 | DOI | MR | Zbl

[11] Ibragimov I. A., Linnik Yu. V., Independent and stationary sequences of random variables, Nauka Publ., Moscow, 1965, 524 pp. (in Russian) | MR

[12] Shmelev I. V., “Influence of fractal processes on network teletraffic in modern distributed information networks”, Business process reengineering based on information technology, Moscow State University of Economics, Statistics and Informatics, Moscow, 2004, 11–12 (in Russian)

[13] Shmelev I. V., “Multiservice network traffic model based on a mixture of self-similar processes”, nternational Informatization Forum MFI, MTUCI, Moscow, 2004, 12 (in Russian)