Fourier methods for recursive estimating of distribution function in dose-effect relationship
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2018), pp. 31-49

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proposed a kernel Fourier methods for recursive estimating of the distribution function in dose-effect relationship where the entered doses are observed with errors. The asymptotic normality of the offered estimates is proved. The possibility for increasing the accuracy of the estimators through repeated measurements of the entered doses is discussed.
Keywords: dose-effect relationship, deconvolving kernel distribution function estimators, asymptotic normality.
@article{VTPMK_2018_4_a2,
     author = {M. S. Tikhov},
     title = {Fourier methods for recursive estimating of distribution function in dose-effect relationship},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {31--49},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a2/}
}
TY  - JOUR
AU  - M. S. Tikhov
TI  - Fourier methods for recursive estimating of distribution function in dose-effect relationship
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 31
EP  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a2/
LA  - ru
ID  - VTPMK_2018_4_a2
ER  - 
%0 Journal Article
%A M. S. Tikhov
%T Fourier methods for recursive estimating of distribution function in dose-effect relationship
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 31-49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a2/
%G ru
%F VTPMK_2018_4_a2
M. S. Tikhov. Fourier methods for recursive estimating of distribution function in dose-effect relationship. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2018), pp. 31-49. http://geodesic.mathdoc.fr/item/VTPMK_2018_4_a2/