On bound of transfinite construction of inflationary fixed point
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 72-80
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider inflationary fixed point operators which are not computable in finitely many steps. In this case we prove that for any ordinal $\alpha\leq\omega^\omega$ there exists an IFP-operator converging exactly in $\alpha$ steps. For discrete order there exists an IFP-operator which can converge exactly in $\alpha$ steps for any ordinal $\alpha$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
inflationary fixed point, discrete order, transfinite construction.
                    
                  
                
                
                @article{VTPMK_2018_3_a4,
     author = {S. M. Dudakov},
     title = {On bound of transfinite construction of inflationary fixed point},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {72--80},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/}
}
                      
                      
                    TY - JOUR AU - S. M. Dudakov TI - On bound of transfinite construction of inflationary fixed point JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2018 SP - 72 EP - 80 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/ LA - ru ID - VTPMK_2018_3_a4 ER -
S. M. Dudakov. On bound of transfinite construction of inflationary fixed point. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 72-80. http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/
