On bound of transfinite construction of inflationary fixed point
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 72-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider inflationary fixed point operators which are not computable in finitely many steps. In this case we prove that for any ordinal $\alpha\leq\omega^\omega$ there exists an IFP-operator converging exactly in $\alpha$ steps. For discrete order there exists an IFP-operator which can converge exactly in $\alpha$ steps for any ordinal $\alpha$.
Keywords: inflationary fixed point, discrete order, transfinite construction.
@article{VTPMK_2018_3_a4,
     author = {S. M. Dudakov},
     title = {On bound of transfinite construction of inflationary fixed point},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {72--80},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/}
}
TY  - JOUR
AU  - S. M. Dudakov
TI  - On bound of transfinite construction of inflationary fixed point
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 72
EP  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/
LA  - ru
ID  - VTPMK_2018_3_a4
ER  - 
%0 Journal Article
%A S. M. Dudakov
%T On bound of transfinite construction of inflationary fixed point
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 72-80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/
%G ru
%F VTPMK_2018_3_a4
S. M. Dudakov. On bound of transfinite construction of inflationary fixed point. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 72-80. http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a4/