On a nonlocal inverse problem for a Benney-Luke type integro-differential equation with degenerate kernel
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 19-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Are considered the questions of generalized solvability of the nonlocal direct and inverse boundary value problems with integral conditions for a restore the resource and boundary regimes for a nonlinear Benney-Luke type integro-differential equation of the fourth order with degenerate kernel. The method of degenerate kernel is applied and developed for the case of considering Benney-Luke type integro-differential equation of the fourth order. The required solutions of the problem are decomposed into series by the aid of Fourier method of separation of variables. Is obtained a system of countable system of algebraic equations. Solving this system is derived a system of two countable system of nonlinear functional integral equations with respect to first and second unknowing variables and the formula for calculate the third unknowing variable. Is proved the one value solvability of the considered problem. Is used the method of compressing mapping.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
inverse problem, Benney-Luke type integro-differential equation, degenerate kernel, a triple of unknowing functions, one valued solvability.
                    
                  
                
                
                @article{VTPMK_2018_3_a1,
     author = {T. K. Yuldashev},
     title = {On a nonlocal inverse problem for a {Benney-Luke} type integro-differential equation with degenerate kernel},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {19--41},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a1/}
}
                      
                      
                    TY - JOUR AU - T. K. Yuldashev TI - On a nonlocal inverse problem for a Benney-Luke type integro-differential equation with degenerate kernel JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2018 SP - 19 EP - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a1/ LA - ru ID - VTPMK_2018_3_a1 ER -
%0 Journal Article %A T. K. Yuldashev %T On a nonlocal inverse problem for a Benney-Luke type integro-differential equation with degenerate kernel %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2018 %P 19-41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a1/ %G ru %F VTPMK_2018_3_a1
T. K. Yuldashev. On a nonlocal inverse problem for a Benney-Luke type integro-differential equation with degenerate kernel. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 19-41. http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a1/
