On the exact solutions of quasi–hydrodynamic system that satisfy the generalized Gromeki-Beltrami condition
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quasi-hydrodynamic system was proposed by the author in 1993. It has deep connections with classical Navier-Stokes equations. In this paper exact solutions of quasi-hydrodynamic system, obeying the generalized Gromeka-Beltrami condition system, are constructed. These solutions also satisfy the Navier-Stokes system and have been found previously for it in a different way. In the non-stationary case they generalize well-known Jeffrey Ingram Taylor's solution.
Keywords: Navier-Stokes and Euler systems, generalized Gromeka-Beltrami condition.
Mots-clés : quasi-hydrodynamic system, exact solutions
@article{VTPMK_2018_3_a0,
     author = {Yu. V. Sheretov},
     title = {On the exact solutions of quasi{\textendash}hydrodynamic system that satisfy the generalized {Gromeki-Beltrami} condition},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--18},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a0/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - On the exact solutions of quasi–hydrodynamic system that satisfy the generalized Gromeki-Beltrami condition
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 5
EP  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a0/
LA  - ru
ID  - VTPMK_2018_3_a0
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T On the exact solutions of quasi–hydrodynamic system that satisfy the generalized Gromeki-Beltrami condition
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 5-18
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a0/
%G ru
%F VTPMK_2018_3_a0
Yu. V. Sheretov. On the exact solutions of quasi–hydrodynamic system that satisfy the generalized Gromeki-Beltrami condition. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2018), pp. 5-18. http://geodesic.mathdoc.fr/item/VTPMK_2018_3_a0/

[1] Landau L. D., Lifshits E. M., Hydrodynamics, Nauka Publ., Moscow, 1986, 736 pp. (in Russian) | MR

[2] Lojtsyanskij L. G., Fluid and Gas Mechanics, Nauka Publ., Moscow, 1987, 840 pp. (in Russian)

[3] Shmyglevskij Yu. D., Analytical Investigations of Gas and Fluid Dynamics, Editorial URSS Publ., Moscow, 1999, 232 pp. (in Russian)

[4] Riley N., Drazin P. G., The Navier–Stokes equations: A classification of flows and exact solutions, Cambridge University Press, Cambridge, 2006, 196 pp. | MR | Zbl

[5] Wang C. Y., “Exact solutions of the unsteady Navier–Stokes equations”, Applied Mechanics Reviews, 42:11, Part 2 (1989), S269–S282 | DOI | MR | Zbl

[6] Wang C. Y., “Exact solutions of the Navier–Stokes equations – the generalized Beltrami flows, review and extension”, Acta Mechanica, 81 (1990), 69–74 | DOI | MR | Zbl

[7] Wang C. Y., “Exact solutions of the steady–state Navier–Stokes equations”, Annual Review of Fluid Mechanics, 23 (1991), 159–177 | DOI | MR | Zbl

[8] Sheretov Yu. V., “On uniqueness of the solutions for one dissipative system of hydrodynamic type”, Mathematical Modeling, 6:10 (1994), 35–45 (in Russian) | MR | Zbl

[9] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)

[10] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)

[11] Sheretov Yu. V., “On the common exact solutions of stationary Navier-Stokes and quasi–hydrodynamic systems, not satisfying to Euler equations”, Herald of Tver State University. Series: Applied Mathematics, 2017, no. 2, 5–15 (in Russian)

[12] Sheretov Yu. V., “On common exact solutions of Navier-Stokes and quasi–hydrodynamic systems for nonstationary flows”, Herald of Tver State University. Series: Applied Mathematics, 2017, no. 3, 13–25 (in Russian) | DOI