Simple expressions for estimating the molecular freedom parameter in the dimer problem
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2018), pp. 27-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for calculating the molecular freedom parameter in the dimer model for two-parameter families of lattice graphs with periodic boundary conditions is discussed. It is shown that the scheme of calculations for the most known types of lattices can be unified and it allows us to find simple but fairly accurate estimates from above of the model parameter. The possibilities of the proposed approach are illustrated by examples for which only numerical values were previously known. It is noted that the method can also be useful for estimating parameters in other lattice models. We show that the entropy of spanning trees on a triangular lattice is a special case of the formulas derived in this paper.
Keywords: dimer problem, molecular freedom.
@article{VTPMK_2018_2_a1,
     author = {S. N. Perepechko},
     title = {Simple expressions for estimating the molecular freedom parameter in the dimer problem},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {27--47},
     year = {2018},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/}
}
TY  - JOUR
AU  - S. N. Perepechko
TI  - Simple expressions for estimating the molecular freedom parameter in the dimer problem
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 27
EP  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/
LA  - ru
ID  - VTPMK_2018_2_a1
ER  - 
%0 Journal Article
%A S. N. Perepechko
%T Simple expressions for estimating the molecular freedom parameter in the dimer problem
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 27-47
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/
%G ru
%F VTPMK_2018_2_a1
S. N. Perepechko. Simple expressions for estimating the molecular freedom parameter in the dimer problem. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2018), pp. 27-47. http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/

[1] Wu F. Y., “Dimers on two-dimensional lattices”, International Journal of Modern Physics B, 20:32 (2006), 5357-5371 | DOI

[2] Montroll E. W., “Lattice statistics”, Applied Combinatorial Mathematics, ed. E.F. Beckenbach, John Wiley and Sons, New York, 1964, 96-143

[3] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series., v. 1, Elementary functions, Nauka, Moscow; FizMatLit Publ., Moscow, 1981, 800 pp. (in Russian)

[4] Grensing D., Carlsen I., Zapp H.-Chr., “Some exact results for the dimer problem on plane lattices with non-standard boundaries”, Philosophical Magazine A, 41:5 (1980), 777-781 | DOI

[5] Elser V., “Solution of the dimer problem on a hexagonal lattice with boundary”, Journal of Physics A: Mathematical and General, 17:7 (1984), 1509-1513 | DOI

[6] Kasteleyn P. W., “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice”, Physica, 27:12 (1961), 1209-1225 | DOI

[7] Temperley H. N. V., Fisher M. E., “Dimer problem in statistical mechanics – an exact result”, Philosophical Magazine, 6:68 (1961), 1061-1063 | DOI

[8] Perepechko S. N., “Number of perfect matchings on triangular lattices of fixed width”, Proceedings of the conference “Discrete Mathematics, Algebra and Their Applications”, DIMA-2015 (Minsk, 2015), 129-130 (in Russian)

[9] Karavaev A. M., Perepechko S. N., “Generating functions for dimer problem on rectangular lattices”, Information Processes, 13:4 (2013), 374-400 (in Russian)

[10] Krupnikov E. D., Kölbig K. S., “Some special cases of the generalized hypergeometric function ${}_{q+1}F_q$”, Journal of Computational and Applied Mathematics, 78 (1997), 79-95 | DOI

[11] Schrijver A., “Counting 1-factors in regular bipartite graphs”, Journal of Combinatorial Theory B, 72 (1998), 122-135 | DOI

[12] Gordon M., Davison W. T. H., “Theory of resonance topology of fully aromatic hydrocarbons. I”, Journal of Chemical Physics, 20:3 (1952), 428-435 | DOI

[13] Wannier G. H., “Antiferromagnetism. The triangular Ising net”, Physical Review, 79 (1950), 357-364 | DOI

[14] Clausen Th., “Über die function $\sin \phi + \frac{1}{2^2}\sin 2\phi + \frac{1}{3^2}\sin 3\phi\ +$ etc.”, Journal für die reine und angewandte Mathematik, 8 (1832), 298-300 | DOI

[15] Fettis H. E., “Problem 6448”, American Mathematical Monthly, 91:1 (1984), 59 | DOI

[16] Fowler R. H., Rushbrooke G. S., “An attempt to extend the statistical theory of perfect solutions”, Transactions of the Faraday Society, 33 (1937), 1272-1294 | DOI

[17] Izmailian N. Sh., Oganesyan K. B., Wu M. -Ch., Hu Ch. -K., “Finite-size corrections and scaling for the triangular lattice dimer model with periodic boundary conditions”, Physilal Review E, 73 (2006), 016128 | DOI

[18] Phares A. J., Wunderlich F. J., “Thermodynamics and molecular freedom of dimers on plane triangular lattices”, Journal of Mathematical Physics, 27 (1986), 1099-1109 | DOI

[19] Priezzhev V. B., “The dimer problem and the Kirchhoff theorem”, Soviet Physics Uspekhi, 28:12 (1985), 1125-1135 | DOI | DOI

[20] Guttmann A. J., Rogers M. D., “Spanning tree generating functions and Mahler measures”, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 494001 | DOI

[21] Glasser M. L., Wu F. Y., “On the entropy of spanning trees on a large triangular lattice”, Ramanujan Journal, 10 (2005), 205-214 | DOI

[22] Perepechko S. N., “Estimation of molecular freedom in the dimer model by the EFM method”, Proceedings of the VI international conference “Mathematics, its applications and mathematical education”, MAME-2017 (Ulan-Ude, 2017), 289-294 (in Russian)