@article{VTPMK_2018_2_a1,
author = {S. N. Perepechko},
title = {Simple expressions for estimating the molecular freedom parameter in the dimer problem},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {27--47},
year = {2018},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/}
}
TY - JOUR AU - S. N. Perepechko TI - Simple expressions for estimating the molecular freedom parameter in the dimer problem JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2018 SP - 27 EP - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/ LA - ru ID - VTPMK_2018_2_a1 ER -
%0 Journal Article %A S. N. Perepechko %T Simple expressions for estimating the molecular freedom parameter in the dimer problem %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2018 %P 27-47 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/ %G ru %F VTPMK_2018_2_a1
S. N. Perepechko. Simple expressions for estimating the molecular freedom parameter in the dimer problem. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2018), pp. 27-47. http://geodesic.mathdoc.fr/item/VTPMK_2018_2_a1/
[1] Wu F. Y., “Dimers on two-dimensional lattices”, International Journal of Modern Physics B, 20:32 (2006), 5357-5371 | DOI
[2] Montroll E. W., “Lattice statistics”, Applied Combinatorial Mathematics, ed. E.F. Beckenbach, John Wiley and Sons, New York, 1964, 96-143
[3] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series., v. 1, Elementary functions, Nauka, Moscow; FizMatLit Publ., Moscow, 1981, 800 pp. (in Russian)
[4] Grensing D., Carlsen I., Zapp H.-Chr., “Some exact results for the dimer problem on plane lattices with non-standard boundaries”, Philosophical Magazine A, 41:5 (1980), 777-781 | DOI
[5] Elser V., “Solution of the dimer problem on a hexagonal lattice with boundary”, Journal of Physics A: Mathematical and General, 17:7 (1984), 1509-1513 | DOI
[6] Kasteleyn P. W., “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice”, Physica, 27:12 (1961), 1209-1225 | DOI
[7] Temperley H. N. V., Fisher M. E., “Dimer problem in statistical mechanics – an exact result”, Philosophical Magazine, 6:68 (1961), 1061-1063 | DOI
[8] Perepechko S. N., “Number of perfect matchings on triangular lattices of fixed width”, Proceedings of the conference “Discrete Mathematics, Algebra and Their Applications”, DIMA-2015 (Minsk, 2015), 129-130 (in Russian)
[9] Karavaev A. M., Perepechko S. N., “Generating functions for dimer problem on rectangular lattices”, Information Processes, 13:4 (2013), 374-400 (in Russian)
[10] Krupnikov E. D., Kölbig K. S., “Some special cases of the generalized hypergeometric function ${}_{q+1}F_q$”, Journal of Computational and Applied Mathematics, 78 (1997), 79-95 | DOI
[11] Schrijver A., “Counting 1-factors in regular bipartite graphs”, Journal of Combinatorial Theory B, 72 (1998), 122-135 | DOI
[12] Gordon M., Davison W. T. H., “Theory of resonance topology of fully aromatic hydrocarbons. I”, Journal of Chemical Physics, 20:3 (1952), 428-435 | DOI
[13] Wannier G. H., “Antiferromagnetism. The triangular Ising net”, Physical Review, 79 (1950), 357-364 | DOI
[14] Clausen Th., “Über die function $\sin \phi + \frac{1}{2^2}\sin 2\phi + \frac{1}{3^2}\sin 3\phi\ +$ etc.”, Journal für die reine und angewandte Mathematik, 8 (1832), 298-300 | DOI
[15] Fettis H. E., “Problem 6448”, American Mathematical Monthly, 91:1 (1984), 59 | DOI
[16] Fowler R. H., Rushbrooke G. S., “An attempt to extend the statistical theory of perfect solutions”, Transactions of the Faraday Society, 33 (1937), 1272-1294 | DOI
[17] Izmailian N. Sh., Oganesyan K. B., Wu M. -Ch., Hu Ch. -K., “Finite-size corrections and scaling for the triangular lattice dimer model with periodic boundary conditions”, Physilal Review E, 73 (2006), 016128 | DOI
[18] Phares A. J., Wunderlich F. J., “Thermodynamics and molecular freedom of dimers on plane triangular lattices”, Journal of Mathematical Physics, 27 (1986), 1099-1109 | DOI
[19] Priezzhev V. B., “The dimer problem and the Kirchhoff theorem”, Soviet Physics Uspekhi, 28:12 (1985), 1125-1135 | DOI | DOI
[20] Guttmann A. J., Rogers M. D., “Spanning tree generating functions and Mahler measures”, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 494001 | DOI
[21] Glasser M. L., Wu F. Y., “On the entropy of spanning trees on a large triangular lattice”, Ramanujan Journal, 10 (2005), 205-214 | DOI
[22] Perepechko S. N., “Estimation of molecular freedom in the dimer model by the EFM method”, Proceedings of the VI international conference “Mathematics, its applications and mathematical education”, MAME-2017 (Ulan-Ude, 2017), 289-294 (in Russian)