Numerical solution to inverse problems for linear parabolic equation
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 69-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the inverse problems for a parabolic equation with unknown coefficients on the right-hand side are considered. Boundary value problems with nonlocal conditions are reduced to such problems. We investigate separately two cases: unknown coefficients depend on either time variable only or phase coordinates only. A numerical method to solve the problems by using the method of lines is suggested. The results of numerical experiments on test problems are given.
Keywords: inverse problem, method of lines, parametric identification.
Mots-clés : nonlocal conditions, parabolic equation
@article{VTPMK_2018_1_a5,
     author = {A. B. Ragimov},
     title = {Numerical solution to inverse problems for linear parabolic equation},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {69--87},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a5/}
}
TY  - JOUR
AU  - A. B. Ragimov
TI  - Numerical solution to inverse problems for linear parabolic equation
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 69
EP  - 87
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a5/
LA  - ru
ID  - VTPMK_2018_1_a5
ER  - 
%0 Journal Article
%A A. B. Ragimov
%T Numerical solution to inverse problems for linear parabolic equation
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 69-87
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a5/
%G ru
%F VTPMK_2018_1_a5
A. B. Ragimov. Numerical solution to inverse problems for linear parabolic equation. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 69-87. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a5/

[1] Cannon J. R., Duchateau P., “Structural identification of an unknown source term in a heat equation”, Inverse Problems, 14 (1998), 535–551 | DOI | MR

[2] Fatullayev A. G., “Numerical solution of the inverse problem of determining an unknown source term in a two-dimensional heat equation”, Applied Mathematics and Computation, 152 (2004), 659–666 | DOI | MR

[3] Liu C. -S., “An two-stage LGSM to identify time dependent heat source through an internal measurement of temperature”, International Journal of Heat and Mass Transfer, 52 (2009), 1635–1642 | DOI

[4] Liu C. -S., “A Lie-group shooting method for reconstructing a past time-dependent heat source”, International Journal of Heat and Mass Transfer, 55 (2012), 1773–1781 | DOI

[5] Yang L., Deng Z. -C., Yu J. -N., Luo G. -W., “Optimization method for the inverse problem of reconstructing the source term in a parabolic equation”, Mathematics and Computers in Simulation, 80 (2009), 314–326 | DOI | MR

[6] Farcas A., Lesnic D., “The boundary-element method for the determination of a heat source dependent on one variable”, Journal of Engineering Mathematics, 54 (2006), 375–388 | DOI | MR

[7] Ling L., Yamamoto M., Hon Y. C., “Identification of source locations in two-dimensional heat equations”, Inverse Problems, 22 (2006), 1289–1305 | DOI | MR

[8] Mohebbia A., Abbasia M., “A fourth-order compact difference scheme for the parabolic inverse problem with an overspecification at a point”, Inverse Problems in Science and Engineering, 23:3 (2015), 457–478 | DOI | MR

[9] Johansson T., Lesnic D., “A variational method for identifying a spacewise-dependent heat source”, IMA Journal of Applied Mathematics, 72 (2007), 748–760 | DOI | MR

[10] Hasanov A., “Identification of spacewise and time dependent source terms in 1D heat conduction equation from temperature measurement at a final time”, International Journal of Heat and Mass Transfer, 55 (2012), 2069–2080 | DOI

[11] Hasanov A., “An inverse source problem with single Dirichlet type measured output data for a linear parabolic equation”, Applied Mathematics Letters, 24 (2011), 1269–1273 | DOI | MR

[12] Prilepko A. I., Kostin A. B., “On certain inverse problems for parabolic equations with final and integral observation”, Sbornik: Mathematics, 75:2 (1993), 473–490 | DOI | MR | MR

[13] Savateev E. G., “On the problem of identification of a coefficient in a parabolic equation”, Siberian Mathematical Journal, 36:1 (1995), 160–167 | DOI | MR

[14] Ivanchov M. I., “The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions”, Journal of Mathematical Sciences, 88:3 (1998), 432–436 | DOI | MR

[15] Yan L., Fu C. L., Yang F. L., “The method of fundamental solutions for the inverse heat source problem”, Engineering Analysis with Boundary Elements, 32 (2008), 216–222 | DOI

[16] Ahmadabadi M. N., Arab M., Maalek Ghaini F. M., “The method of fundamental solutions for the inverse space-dependent heat source problem”, Engineering Analysis with Boundary Elements, 33 (2009), 1231–1235 | DOI | MR

[17] Ismailov M. I., Kanca F., Lesnic D., “Determination of a time-dependent heat source under nonlocal boundary and integral overdetermination conditions”, Applied Mathematics and Computation, 218 (2011), 4138–4146 | DOI | MR

[18] Pulkina L. S., “On one class of nonlocal problems and their connection with inverse problems”, Proceedings of the Third All-Russia scientific conference «Mathematical modelling and boundary value problems», v. 3, Differential equations and boundary value problems, SSTU, Samara, 2006, 190–192 (in Russian)

[19] Kamynin V. L., “On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition”, Mathematical Notes, 77:4 (2005), 482–493 | DOI | DOI | MR

[20] Prilepko A. I., Tkachenko D. S., “Well-posedness of the inverse source problem for parabolic systems”, Differential Equations, 40:11 (2004), 1619–1626 | DOI | MR

[21] Nakhushev A. M., Equations of Mathematical Biology, «Vysshaya Shkola» Publ., Moscow, 1995, 305 pp. (in Russian)

[22] Samarskii A. A., “On some problems of the modern theory of differential equations”, Differential Equations, 16:11 (1980), 1221-1228 (in Russian) | MR

[23] Ionkin N. I., “Solution to one boundary-value thermal conductivity problem with nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (in Russian) | MR

[24] Bouziani A., Benouar N-E., “Probleme mixte avec conditions integrales pour une classe d'equations paraboliques”, Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 321 (1995), 1177–1182 | MR

[25] Vodakhova V. A., “A.M. Nahushev's boundary-value problem with nonlocal condition for one pseudo-parabolic moisture transfer equation”, Differential Equations, 18:2 (1982), 280–285 (in Russian) | MR

[26] Belavin V. A., Kapitsa S. P., Kurdyumov S. P., “Mathematical model of demographic processes with regard of a space distribution”, Computational Mathematics and Mathematical Physics, 38:6 (1998), 885–902 (in Russian)

[27] Schiesser W. E., The Numerical Method of Lines: Integration of Partial Differential Equations, Academic Press, San Diego, 1991, 326 pp. | MR

[28] Samusenko A. V., Frolova S. V., “Multipoint schemes of the longitudinal variant of highly accurate method of lines to solve some problems of mathematical physics”, Proceedings of the National Academy of Sciences of Belarus. Series of Physical-Mathematical Sciences, 2009, no. 3, 31–39 (in Russian) | MR

[29] Liskovets O. A., “The method of lines”, Differential Equations, 1:12 (1965), 1662–1678 (in Russian) | MR

[30] Aida-zade K. R., Rahimov A. B., “An approach to numerical solution of some inverse problems for parabolic equations”, Inverse Problems in Science and Engineering, 22:1 (2014), 96–111 | DOI | MR

[31] Budak B. M., “The method of lines for some quasilinear parabolic boundary-value problems”, Computational Mathematics and Mathematical Physics, 1:6 (1961), 1105–1112 (in Russian)