Gradient descent method in computation of instantaneous cardiac rhythm multifractal model parameters
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 55-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we present the numerically solved system of nonlinear equations which determinates the parameters of multifractal dynamics model (MFD) of instantaneous cardiac rhythm (ICR) of one of the patients of Tver cardiology health center using a gradient descent method with step size optimization. We constructed the ICR change rate-fractal dimension relation. It follows that the ICR fractal dimension values in pre-jump time intervals are located in close proximity to the bifurcation point value while maximally deviating by just $0.04$. We showed that the ICR jump necessary condition is the proximity to the bifurcation point value of pre-jump ICR fractal dimension. We obtained the formula for evaluation of ICR jump area diameter, and on its basis we evaluated this diameter. We showed the proximity of the fractal dimension value in bifurcation point to the Gaussian value which was $1.5$. We wrote and implemented the software program to count the ICR jump frequency for the patient under examination. The average value was found to be $956.526$ hour$^{-1}$.
Keywords: instantaneous heart rate, multifractal dynamics model, instantaneous heart rate jumps, regularized Newton method.
Mots-clés : bifurcation catastrophes, gradient descent method
@article{VTPMK_2018_1_a4,
     author = {E. V. Bespalko and V. A. Gubin and S. A. Miheev and V. P. Redchits and V. N. Ryzhikov},
     title = {Gradient descent method in computation of instantaneous cardiac rhythm multifractal model parameters},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {55--67},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a4/}
}
TY  - JOUR
AU  - E. V. Bespalko
AU  - V. A. Gubin
AU  - S. A. Miheev
AU  - V. P. Redchits
AU  - V. N. Ryzhikov
TI  - Gradient descent method in computation of instantaneous cardiac rhythm multifractal model parameters
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 55
EP  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a4/
LA  - ru
ID  - VTPMK_2018_1_a4
ER  - 
%0 Journal Article
%A E. V. Bespalko
%A V. A. Gubin
%A S. A. Miheev
%A V. P. Redchits
%A V. N. Ryzhikov
%T Gradient descent method in computation of instantaneous cardiac rhythm multifractal model parameters
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 55-67
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a4/
%G ru
%F VTPMK_2018_1_a4
E. V. Bespalko; V. A. Gubin; S. A. Miheev; V. P. Redchits; V. N. Ryzhikov. Gradient descent method in computation of instantaneous cardiac rhythm multifractal model parameters. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 55-67. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a4/

[1] Kudinov A. N., Lebedev D. Yu., Tsvetkov V. P., Tsvetkov I. V., “Mathematical model of multifractal dynamics and analysis of heart rhythms”, Math Modeling, 26:10 (2014), 127–136 (in Russian)

[2] Ivanov A. P., Kudinov A. N., Lebedev D. Yu., Tsvetkov V. P., Tsvetkov I. V., “Analysis of instantaneous heart rate in the model of multifractal dynamics based on Holter monitoring”, Math Modeling, 27:4 (2015), 16–30 (in Russian)

[3] Kudinov A. N., Tsvetkov V. P., Tsvetkov I. V., “Catastrophes in the multifractal dynamics of socioeconomic systems”, Russian Journal of Mathematical Physics, 18:2 (2011), 149–155 | DOI | MR

[4] Kudinov A. N., Lebedev D. Yu., Ryzikov V. N., Tsvetkov V. P., Tsvetkov I. V., Ivanov A. P., “Self-similarity of a scatterogramm of an instant cardiac rhythm”, Herald of Tver State University. Series: Applied Mathematics, 2014, no. 3, 105–115 (in Russian)

[5] Kudinov A. N., Lebedev D. Yu., Ryzikov V. N., Tsvetkov V. P., Tsvetkov I. V., Ivanov A. P., “Self-similarity and fractal dimension of the scatterogram of instantaneous cardiac”, High Technology, 2015, no. 5, 57–63 (in Russian)

[6] Ivanov A. P., Kudinov A. N., Lebedev D. Y., Mikheev S. A., Tsvetkov V. P., Tsvetkov I. V., “Bifurcation catastrophes of an instant cardiac rhythm in multifractal dynamics model”, Herald of Tver State University. Series: Applied Mathematics, 2016, no. 1, 63–73 (in Russian)

[7] Ivanov A. P., Kudinov A. N., Lebedev D. Y., Mikheev S. A., Tsvetkov V. P., Tsvetkov I. V., “Disasters of instantaneous heart rhythm in the model of multifractal dynamics and based on Holter monitoring data”, Math Modeling, 29:5 (2017), 73–84 (in Russian) | MR

[8] Kalitkin N. N., Numerical Methods, Nauka Publ., Moscow, 1978, 512 pp. (in Russian) | MR

[9] Ermakov V. V., Kalitkin N. N., “Optimal step and regularization of the Newton method”, Journal of Computational Mathematics and Mathematical Physics, 21:2 (1981), 419–497 (in Russian) | MR