New characterizations of Brownian motion
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 43-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper new characterizations of Brownian motion are proved. They generalize and supplement the famous Levi theorem on the characterization of the process of Brownian motion in the class of square integrable continuous martingales. The first characterization (Theorem 1) generalizes the Levi theorem. Two other characterizations (Theorems 2 and 3) are analogues of the Levi theorem, in which the continuity condition is replaced by other conditions.
Keywords: Levy theorem, process with independent increments, infinitely divisible distributions, Brownian motion
Mots-clés : martingales.
@article{VTPMK_2018_1_a3,
     author = {D. Kh. Kazanchyan},
     title = {New characterizations of {Brownian} motion},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {43--54},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/}
}
TY  - JOUR
AU  - D. Kh. Kazanchyan
TI  - New characterizations of Brownian motion
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 43
EP  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/
LA  - ru
ID  - VTPMK_2018_1_a3
ER  - 
%0 Journal Article
%A D. Kh. Kazanchyan
%T New characterizations of Brownian motion
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 43-54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/
%G ru
%F VTPMK_2018_1_a3
D. Kh. Kazanchyan. New characterizations of Brownian motion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 43-54. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/