Mots-clés : martingales.
@article{VTPMK_2018_1_a3,
author = {D. Kh. Kazanchyan},
title = {New characterizations of {Brownian} motion},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {43--54},
year = {2018},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/}
}
D. Kh. Kazanchyan. New characterizations of Brownian motion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 43-54. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/
[1] Kruglov V. M., Sluchainye Protsessy, v. 1, Osnovy Obshchei Teorii, Yurait Publ., Moscow, 276 pp. (in Russian)
[2] Loève M., Probability theory I, Springer-Verlag, 1977, 428 pp. | MR
[3] Kruglov V. M., “A Note on infinitely divisible distributions”, Theory of Probability and its Applications, 15:2 (1970), 330–336 (in Russian)
[4] Kruglov V. M., “Integrals with respect to infinitely divisible distributions in a Hilbert space”, Mathematical Notes, 11:6 (1972), 669–676 (in Russian)
[5] Rossberg H. -J., Jesiak B., Siegel G., Analytical Methods of Probability Theory, Akademie-Verlag, Berlin, 1985, 311 pp. | MR
[6] Sato Ken-Iti, Levy Processes and Infinitely Divisible Distributions, University Press, Cambridge, 1999, 486 pp. | MR
[7] Yakymiv A. L., Probabilistic Applications of Tauberian Theorems, Fizmatlit Publ., Moscow, 2005, 256 pp. (in Russian)
[8] Kruglov V. M., Antonov A. N., “Once more on the asymptotic behavior of infinitely divisible distributions in Banach space”, Theory of Probability and its Applications, 17:4 (1982), 625–642 (in Russian)
[9] Hogg R. V., Craig A. T., Introduction to mathematical statistics, Macmillan, New York, 1970, 415 pp. | MR