New characterizations of Brownian motion
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 43-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper new characterizations of Brownian motion are proved. They generalize and supplement the famous Levi theorem on the characterization of the process of Brownian motion in the class of square integrable continuous martingales. The first characterization (Theorem 1) generalizes the Levi theorem. Two other characterizations (Theorems 2 and 3) are analogues of the Levi theorem, in which the continuity condition is replaced by other conditions.
Keywords: Levy theorem, process with independent increments, infinitely divisible distributions, Brownian motion
Mots-clés : martingales.
@article{VTPMK_2018_1_a3,
     author = {D. Kh. Kazanchyan},
     title = {New characterizations of {Brownian} motion},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {43--54},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/}
}
TY  - JOUR
AU  - D. Kh. Kazanchyan
TI  - New characterizations of Brownian motion
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 43
EP  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/
LA  - ru
ID  - VTPMK_2018_1_a3
ER  - 
%0 Journal Article
%A D. Kh. Kazanchyan
%T New characterizations of Brownian motion
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 43-54
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/
%G ru
%F VTPMK_2018_1_a3
D. Kh. Kazanchyan. New characterizations of Brownian motion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 43-54. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a3/

[1] Kruglov V. M., Sluchainye Protsessy, v. 1, Osnovy Obshchei Teorii, Yurait Publ., Moscow, 276 pp. (in Russian)

[2] Loève M., Probability theory I, Springer-Verlag, 1977, 428 pp. | MR

[3] Kruglov V. M., “A Note on infinitely divisible distributions”, Theory of Probability and its Applications, 15:2 (1970), 330–336 (in Russian)

[4] Kruglov V. M., “Integrals with respect to infinitely divisible distributions in a Hilbert space”, Mathematical Notes, 11:6 (1972), 669–676 (in Russian)

[5] Rossberg H. -J., Jesiak B., Siegel G., Analytical Methods of Probability Theory, Akademie-Verlag, Berlin, 1985, 311 pp. | MR

[6] Sato Ken-Iti, Levy Processes and Infinitely Divisible Distributions, University Press, Cambridge, 1999, 486 pp. | MR

[7] Yakymiv A. L., Probabilistic Applications of Tauberian Theorems, Fizmatlit Publ., Moscow, 2005, 256 pp. (in Russian)

[8] Kruglov V. M., Antonov A. N., “Once more on the asymptotic behavior of infinitely divisible distributions in Banach space”, Theory of Probability and its Applications, 17:4 (1982), 625–642 (in Russian)

[9] Hogg R. V., Craig A. T., Introduction to mathematical statistics, Macmillan, New York, 1970, 415 pp. | MR