Accuracy of reconstruction of the multidimensional probability density by wavelet estimates of one-dimensional projections
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 21-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of non-parametric estimation of a multidimensional probability density. The method of solving this problem is based on the construction of wavelet estimates for one-dimensional projections of the original random vector onto different directions and inversion of the Radon transform. This method of constructing estimates can serve as an alternative to the calculation of kernel density estimates and multivariate wavelet estimates. Wavelet estimates are sensitive to local features of the function being evaluated and therefore are well suited for solving this problem in a situation where the density has a different degree of regularity at different regions. Another important advantage of the considered method is its parallel structure, which makes it possible to significantly accelerate the construction of estimates on computational systems supporting parallel computations. The paper briefly describes the essence of the method and proves statements on the rate of the error decay (in terms of the uniform distance between the estimate and the estimated density function) in the case when the estimated probability density function does not have a compact support.
Keywords: wavelets, non-parametric estimation, multivariate probability density function.
Mots-clés : Radon transform
@article{VTPMK_2018_1_a1,
     author = {A. I. Borisov and O. V. Shestakov},
     title = {Accuracy of reconstruction of the multidimensional probability density by wavelet estimates of one-dimensional projections},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {21--30},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a1/}
}
TY  - JOUR
AU  - A. I. Borisov
AU  - O. V. Shestakov
TI  - Accuracy of reconstruction of the multidimensional probability density by wavelet estimates of one-dimensional projections
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 21
EP  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a1/
LA  - ru
ID  - VTPMK_2018_1_a1
ER  - 
%0 Journal Article
%A A. I. Borisov
%A O. V. Shestakov
%T Accuracy of reconstruction of the multidimensional probability density by wavelet estimates of one-dimensional projections
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 21-30
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a1/
%G ru
%F VTPMK_2018_1_a1
A. I. Borisov; O. V. Shestakov. Accuracy of reconstruction of the multidimensional probability density by wavelet estimates of one-dimensional projections. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 21-30. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a1/

[1] Shestakov O. V., “Nonparametric estimation of multidimensional density with the use of wavelet estimates of univariate projections”, Informatics and Applications, 9:2 (2015), 88–92 (in Russian)

[2] O'Sullivan F., Pawitan Y., “Multidimensional density estimation by tomography”, Journal of the Royal Statistical Society. Series B, 55:2 (1993), 509–521 | MR

[3] Borisov A. I., “Multivariate probability density function estimation”, Proceedings of Second youth academic conference «Problems of modern computer science», 2015, 52–57, FITs IU RAN, Moscow (in Russian)

[4] Smith K. T., Solmon D. C., Wagner S. L., “Practical and mathematical aspects of the problem of reconstructing objects from radiographs”, Bulletin of the American Mathematical Society, 83 (1977), 1227–1270 | DOI | MR

[5] Natterer F., The Mathematics of Computerized Tomography (Classics in Applied Mathematics), Society for Industrial Mathematics, 2001, 184 pp. | MR

[6] Donoho D. L., Johnstone I. M., Kerkyacharian G., Picard D., “Density estimation by wavelet thresholding”, The Annals of Statistics, 23 (1996), 508–539 | MR

[7] Shestakov O. V., Savenkov T. Yu., “Estimating the distances between the densities of measures with $\varepsilon$-identical marginals”, Herald of Moscow University. Series 15: Computational Mathematics and Cybernetics, 2001, no. 4, 44–46 (in Russian)