An improvement of Massart's inequality for the distribution of Smirnov's statistic
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 5-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $F_n$ be the empirical distribution function for a sample of independent identically distributed random variables with distribution function $F.$ The main
result is the inequality
\begin{equation*}
\mathbb{P}\{\sqrt n\sup_{|x|\infty}(F_n(x)-F(x))>\lambda\}\leq 
\exp\{-2\lambda^2-\lambda^4/36n\} 
\end{equation*}
for  $n\geq 39, \min\{ \gamma n^{-1/6}, \sqrt{\ln 2/2}\}\leq\lambda\leq\sqrt n/2, \gamma=1.0841.$ It is also proved for the same $n$ and $\lambda \leq \sqrt{n}/2$ that
\begin{equation*}
\mathbb{P}\{\sqrt n\sup_{|x|\infty}(F_n(x)-F(x))>\lambda\}\leq 
2\exp^{(\ln 2)^2/(144n)}\exp\{-2\lambda^2-\lambda^4/36n\}.
\end{equation*}
In particular cases $n=2,3,4$ it is proved that
\begin{equation*}
\mathbb{P}\{\sqrt n\sup_{|x|\infty}(F_n(x)-F(x))>\lambda\}\leq 
\exp\{-2\lambda^2-4\lambda^4/9n\}.
\end{equation*}
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
distribution of Smirnov’s statistics, exponential inequalities.
                    
                  
                
                
                @article{VTPMK_2018_1_a0,
     author = {I. A. Tashkov},
     title = {An improvement of {Massart's} inequality for the distribution of {Smirnov's} statistic},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--20},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/}
}
                      
                      
                    TY - JOUR AU - I. A. Tashkov TI - An improvement of Massart's inequality for the distribution of Smirnov's statistic JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2018 SP - 5 EP - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/ LA - ru ID - VTPMK_2018_1_a0 ER -
%0 Journal Article %A I. A. Tashkov %T An improvement of Massart's inequality for the distribution of Smirnov's statistic %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2018 %P 5-20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/ %G ru %F VTPMK_2018_1_a0
I. A. Tashkov. An improvement of Massart's inequality for the distribution of Smirnov's statistic. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 5-20. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/
