An improvement of Massart's inequality for the distribution of Smirnov's statistic
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 5-20
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F_n$ be the empirical distribution function for a sample of independent identically distributed random variables with distribution function $F.$ The main result is the inequality \begin{equation*} \mathbb{P}\{\sqrt n\sup_{|x|<\infty}(F_n(x)-F(x))>\lambda\}\leq \exp\{-2\lambda^2-\lambda^4/36n\} \end{equation*} for $n\geq 39, \min\{ \gamma n^{-1/6}, \sqrt{\ln 2/2}\}\leq\lambda\leq\sqrt n/2, \gamma=1.0841.$ It is also proved for the same $n$ and $\lambda \leq \sqrt{n}/2$ that \begin{equation*} \mathbb{P}\{\sqrt n\sup_{|x|<\infty}(F_n(x)-F(x))>\lambda\}\leq 2\exp^{(\ln 2)^2/(144n)}\exp\{-2\lambda^2-\lambda^4/36n\}. \end{equation*} In particular cases $n=2,3,4$ it is proved that \begin{equation*} \mathbb{P}\{\sqrt n\sup_{|x|<\infty}(F_n(x)-F(x))>\lambda\}\leq \exp\{-2\lambda^2-4\lambda^4/9n\}. \end{equation*}
Keywords:
distribution of Smirnov’s statistics, exponential inequalities.
@article{VTPMK_2018_1_a0,
author = {I. A. Tashkov},
title = {An improvement of {Massart's} inequality for the distribution of {Smirnov's} statistic},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--20},
year = {2018},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/}
}
TY - JOUR AU - I. A. Tashkov TI - An improvement of Massart's inequality for the distribution of Smirnov's statistic JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2018 SP - 5 EP - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/ LA - ru ID - VTPMK_2018_1_a0 ER -
I. A. Tashkov. An improvement of Massart's inequality for the distribution of Smirnov's statistic. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 5-20. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/
[1] Smirnov N. V., “Approximation of the laws of distribution of random variables from empirical data”, Successes of Mathematical Sciences, 1944, no. 10, 179–206 (in Russian)
[2] Dvoretzky A., Kiefer J., Wolfowitz J., “Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator”, The Annals of Mathematical Statistics, 27:3 (1956), 642–669 | DOI | MR
[3] Massart P., “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality”, The Annals of Probability, 18:3 (1990), 1269–1283 | DOI | MR
[4] Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York, 1968, 509 pp. | MR