An improvement of Massart's inequality for the distribution of Smirnov's statistic
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 5-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_n$ be the empirical distribution function for a sample of independent identically distributed random variables with distribution function $F.$ The main result is the inequality \begin{equation*} \mathbb{P}\{\sqrt n\sup_{|x|\infty}(F_n(x)-F(x))>\lambda\}\leq \exp\{-2\lambda^2-\lambda^4/36n\} \end{equation*} for $n\geq 39, \min\{ \gamma n^{-1/6}, \sqrt{\ln 2/2}\}\leq\lambda\leq\sqrt n/2, \gamma=1.0841.$ It is also proved for the same $n$ and $\lambda \leq \sqrt{n}/2$ that \begin{equation*} \mathbb{P}\{\sqrt n\sup_{|x|\infty}(F_n(x)-F(x))>\lambda\}\leq 2\exp^{(\ln 2)^2/(144n)}\exp\{-2\lambda^2-\lambda^4/36n\}. \end{equation*} In particular cases $n=2,3,4$ it is proved that \begin{equation*} \mathbb{P}\{\sqrt n\sup_{|x|\infty}(F_n(x)-F(x))>\lambda\}\leq \exp\{-2\lambda^2-4\lambda^4/9n\}. \end{equation*}
Keywords: distribution of Smirnov’s statistics, exponential inequalities.
@article{VTPMK_2018_1_a0,
     author = {I. A. Tashkov},
     title = {An improvement of {Massart's} inequality for the distribution of {Smirnov's} statistic},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--20},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/}
}
TY  - JOUR
AU  - I. A. Tashkov
TI  - An improvement of Massart's inequality for the distribution of Smirnov's statistic
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2018
SP  - 5
EP  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/
LA  - ru
ID  - VTPMK_2018_1_a0
ER  - 
%0 Journal Article
%A I. A. Tashkov
%T An improvement of Massart's inequality for the distribution of Smirnov's statistic
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2018
%P 5-20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/
%G ru
%F VTPMK_2018_1_a0
I. A. Tashkov. An improvement of Massart's inequality for the distribution of Smirnov's statistic. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2018), pp. 5-20. http://geodesic.mathdoc.fr/item/VTPMK_2018_1_a0/