An analog of Markov's theorem
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2017), pp. 73-83
Cet article a éte moissonné depuis la source Math-Net.Ru
In the space of functions summable on a segment, the sign of the best approximation for approximation by elements of a finite-dimensional cone, which is analogue of the well-known theorem of Markov A.A.
Keywords:
banach space, closed convex set, summable function, best approximation, cone of finite dimension, extended cone
Mots-clés : interpolation polynomial.
Mots-clés : interpolation polynomial.
@article{VTPMK_2017_4_a5,
author = {I. A. Drozhzhin},
title = {An analog of {Markov's} theorem},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {73--83},
year = {2017},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_4_a5/}
}
I. A. Drozhzhin. An analog of Markov's theorem. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2017), pp. 73-83. http://geodesic.mathdoc.fr/item/VTPMK_2017_4_a5/
[1] Drozhzhin I. A., “Best approximations of summable functions by elements of a closed convex set with constraints”, Application of Functional Analysis in Approximation Theory, 2014, no. 35, 55-62 (in Russian)
[2] Daugavet I. K., Introduction to the Theory of Approximation of Functions, LGU Publ., Leningrad, 1977 (in Russian) | MR
[3] Kornejchuk N. P., Extremal Problems in Approximation Theory, Nauka Publ., Moscow, 1976 (in Russian) | MR
[4] Peisker P., “An alternant criterion for Haar cones”, Journal of Approximation Theory, 37:3 (1983), 262-268 | DOI | MR | Zbl