Approximation with limitations. The problem of Bernstein
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 93-106

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse theorem of approximation theory is obtained in an arbitrary Banach space in the case of approximations by elements of closed locally compact cones. The theorem is an analogue of the well-known theorem of S.N. Bernshtein, which he proved in the Banach space of continuous functions on an interval when approximating by finite-dimensional subspaces of algebraic polynomials.
Keywords: Banach space, best approximation, closed convex locally compact set, cone, finite-dimensional subspace, complete system in a normed space.
@article{VTPMK_2017_3_a6,
     author = {I. A. Drozhzhin},
     title = {Approximation with limitations. {The} problem of {Bernstein}},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {93--106},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a6/}
}
TY  - JOUR
AU  - I. A. Drozhzhin
TI  - Approximation with limitations. The problem of Bernstein
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 93
EP  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a6/
LA  - ru
ID  - VTPMK_2017_3_a6
ER  - 
%0 Journal Article
%A I. A. Drozhzhin
%T Approximation with limitations. The problem of Bernstein
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 93-106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a6/
%G ru
%F VTPMK_2017_3_a6
I. A. Drozhzhin. Approximation with limitations. The problem of Bernstein. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 93-106. http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a6/