Risk function of statistical procedures for network structures identification
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 45-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Problems of network structures identification by sample of fixed size are considered. The concepts of random variables network and network model as complete weighted graph are introduced. Two types of network structures are introduced: network structures with fixed and arbitrary numbers of network model elements. Problems of network structures identification as multiple decision problems are considered. It is proved that risk functions of statistical procedures for network structures identification can be considered as linear combination of mean numbers of errors of incorrect inclusions and exclusions elements from network model to network structure.
Keywords: random variables network, network model, network structure, identification procedure, first kind errors, second kind errors, additive loss, risk function.
@article{VTPMK_2017_3_a3,
     author = {P. A. Koldanov},
     title = {Risk function of statistical procedures for network structures identification},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {45--59},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a3/}
}
TY  - JOUR
AU  - P. A. Koldanov
TI  - Risk function of statistical procedures for network structures identification
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 45
EP  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a3/
LA  - ru
ID  - VTPMK_2017_3_a3
ER  - 
%0 Journal Article
%A P. A. Koldanov
%T Risk function of statistical procedures for network structures identification
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 45-59
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a3/
%G ru
%F VTPMK_2017_3_a3
P. A. Koldanov. Risk function of statistical procedures for network structures identification. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 45-59. http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a3/

[1] Jordan M. I., “Graphical models”, Statistical Science, 19 (2004), 140-155 | DOI | MR | Zbl

[2] Gibbs W., Elementary Principles of Statistical Mechanics, Yale University press, New Haven, Connecticut, 1902

[3] Wright S., “The method of path coefficients”, Annals of Mathematical Statistics, 5 (1934), 161-215 | DOI

[4] Koller D., Friedman N., Probabilistic Graphical Models, MIT Press, Massachusetts, 2009 | Zbl

[5] Lauritzen S. L., Sheehan N. A., “Graphical models for genetic analyses”, Statistical Science, 18:4 (2003), 489-514 | DOI | MR | Zbl

[6] Lauritzen S. L., Graphical Models, Oxford university press, 1996 | MR

[7] Dempster A. P., “Covariance selection”, Biometrics, 28 (1972), 157-175 | DOI

[8] Wermuth N., “Analogies between multiplicative models in contingency tables and covariance selection”, Biometrics, 32 (1976), 95-108 | DOI | MR | Zbl

[9] Edwards D., Introduction to Graphical Modeling, Springer-Verlag, New York, 2000 | MR

[10] Anderson T. W., An Introduction to Multivariate Statistical Analysis, 3-d edition, Wiley-Interscience, New York, 2003 | MR | Zbl

[11] Drton M., Perlman M., “Model selection for Gaussian concentration graph”, Biometrika, 91:3 (2004), 591-602 | DOI | MR | Zbl

[12] Drton M., Perlman M., “Multiple testing and error control in Gaussian graphical model selection”, Statistical Science, 22:3 (2007), 430-449 | DOI | MR | Zbl

[13] Liu W., “Gaussian graphical model estimation with false discovery rate control”, The Annals of Statistics, 41:6 (2013), 2948-2978 | DOI | MR | Zbl

[14] Boginski V., Butenko S., Pardalos Panos M., “On structural properties of the market graph”, Innovations in Financial and Economic Networks, 2003, 29-45

[15] Mantegna R. N., “Hierarchical structure in financial markets”, The European Physical Journal B-Condensed Matter and Complex Systems, 11:1 (1999), 193-197 | DOI

[16] Koldanov A. P., Koldanov P. A., Kalyagin V. A., “Statistical procedures for the market graph construction”, Computational Statistics Data Analysis, 68 (2013), 17-29 | DOI | MR

[17] Lehmann E. L., “A theory of some multiple decision problems, I”, The Annals of Mathematical Statistics, 28:1 (1957), 1-25 | DOI | MR | Zbl

[18] Lehmann E. L., “A theory of some multiple decision problems. II”, The Annals of Mathematical Statistics, 28:3 (1957), 547-572 | DOI | MR | Zbl

[19] Cohen A., Sackrowitz H. B., “Monotonicity properties of multiple endpoint testing procedures”, Journal of Statistical Planning and Inference, 125 (2004), 17-30 | DOI | MR | Zbl

[20] Cohen A., Sackrowitz H. B., “Decision theory results for one-sided multiple comparison procedures”, The Annals of Statistics, 33:1 (2005), 126-144 | DOI | MR | Zbl

[21] Genovese C., Wasserman L., “Operating characteristics and extensions of the false discovery rate procedure”, Royal Statistical Society, 64:3 (2002), 499-517 | DOI | MR | Zbl