Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 27-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The representation of securities portfolio in the form of multivariate fractional Levy motion is considered. This model has properties such as self-similarity, long term dependence and heavy-tails of one-dimensional distributions of portfolio components. Such properties have been discovered in empirical studies of the financial assets dynamics. One of the important problems in financial analysis is to estimate the contribution of individual components in the total risk of the portfolio. As a measure of this contribution uses the conditional average value of the individual risk components under given total risk of the portfolio. This measure of risk has very important property of of coherence. The first results on this subject were obtained in the paper by Panjer for the case of multivariate normal distribution for possible risks of the portfolio. In our paper we give a detailed proof of this result, and generalize it in case of multivariate elliptical stable distribution. It is impossible to get explicit expressions in this situation. We propose some explicit expression for large values of the total risk. The task is solved sequentially for one-dimensional stable distribution, multivariate elliptical stable distributions and multivariate fractional Levy motion.
Keywords: multivariate fractional Levy motion, portfolio tail conditional expectation.
@article{VTPMK_2017_3_a2,
     author = {O. I. Rumyantseva and Yu. S. Khokhlov},
     title = {Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional {Levy} motion},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {27--44},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/}
}
TY  - JOUR
AU  - O. I. Rumyantseva
AU  - Yu. S. Khokhlov
TI  - Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 27
EP  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/
LA  - ru
ID  - VTPMK_2017_3_a2
ER  - 
%0 Journal Article
%A O. I. Rumyantseva
%A Yu. S. Khokhlov
%T Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 27-44
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/
%G ru
%F VTPMK_2017_3_a2
O. I. Rumyantseva; Yu. S. Khokhlov. Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 27-44. http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/

[1] Landsman Z., Valdes E. A., Tail Conditional Expectations for Elliptical Distributions, Technical Report 02-04, October 2002

[2] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Mathematical Foundations of Risk Theory, Fizmatlit Publ., Moscow, 2007 (in Russian)

[3] Panjer H. H., Measurement of Risk, Solvency Requirements, and Allocation of Capital within Financial Conglomerates, Institute of Insurance and Pension Research, University of Waterloo Research Report 01-15

[4] Rumyantseva O. I., Khokhlov Yu. S., “Assessing contribution of the components in the overall risk of the portfolio specified by multidimensional twice stochastic process”, Vestnik TvGU. Seriya: Prikladnaya matematika [Herald of Tver State University. Series: Applied Mathematics], 2013, no. 3(30), 65-71 (in Russian)

[5] Stoev S., Taqqu M., How rich is the class of multifractional brownian motions?, Stochastic Processes and their Applications, 116 (2006), 200-221 | DOI | MR | Zbl

[6] Amblard P. O., Coeurjolly J. F., Lavancier F., Philippe A., “Basic properties of the multivariate fractional Brownian motion”, Bulletin Society Mathematique de France, Seminaires et Congres, 28 (2012), 65-87 | MR

[7] Zolotarev B. M., One-dimensional Stable Distributions, Nauka Publ., Moscow, 1983, 304 pp. (in Russian) | MR

[8] Nolan J. P., “Multivariate elliptically contoured stable distributions: theory and estimation”, Computational Statistics, 28:5 (2013), 2067-2089 | DOI | MR | Zbl

[9] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman $\$ Hall, London, 1994, 632 pp. | MR | Zbl

[10] Embrechts P., Maejima M., Selfsimilar Process, Princeton University Press, Princeton, NJ, 2002, 111 pp. | MR

[11] Khokhlov Yu. S., “Multivariate fractional Levy motion and its applications”, Informatics and its Applications, 10:2 (2016), 98-106 (in Russian) | DOI

[12] De Nikola C., Khokhlov Yu. S., Pagano M., Sidorova O. I., “Fractional Levy motion with dependent increments and its application to network traffic modeling”, Informatika i ee primeneniya, 6:3 (2012), 59-63

[13] Breiman L., “On some limit theorems similar to the arc-sin law”, Theory of Probability and its Applications, 10:2 (1965), 323-331 | DOI | MR | Zbl

[14] Ibragimov I. A., Linnik Ju. V., Independent and Permanently Connected Quantities, Nauka Publ., Moscow, 1965, 524 pp. (in Russian) | MR