@article{VTPMK_2017_3_a2,
author = {O. I. Rumyantseva and Yu. S. Khokhlov},
title = {Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional {Levy} motion},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {27--44},
year = {2017},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/}
}
TY - JOUR AU - O. I. Rumyantseva AU - Yu. S. Khokhlov TI - Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 27 EP - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/ LA - ru ID - VTPMK_2017_3_a2 ER -
%0 Journal Article %A O. I. Rumyantseva %A Yu. S. Khokhlov %T Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 27-44 %N 3 %U http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/ %G ru %F VTPMK_2017_3_a2
O. I. Rumyantseva; Yu. S. Khokhlov. Estimation of the contribution of a component to the overall risk for a portfolio defined by the multivariate fractional Levy motion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 27-44. http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a2/
[1] Landsman Z., Valdes E. A., Tail Conditional Expectations for Elliptical Distributions, Technical Report 02-04, October 2002
[2] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Mathematical Foundations of Risk Theory, Fizmatlit Publ., Moscow, 2007 (in Russian)
[3] Panjer H. H., Measurement of Risk, Solvency Requirements, and Allocation of Capital within Financial Conglomerates, Institute of Insurance and Pension Research, University of Waterloo Research Report 01-15
[4] Rumyantseva O. I., Khokhlov Yu. S., “Assessing contribution of the components in the overall risk of the portfolio specified by multidimensional twice stochastic process”, Vestnik TvGU. Seriya: Prikladnaya matematika [Herald of Tver State University. Series: Applied Mathematics], 2013, no. 3(30), 65-71 (in Russian)
[5] Stoev S., Taqqu M., How rich is the class of multifractional brownian motions?, Stochastic Processes and their Applications, 116 (2006), 200-221 | DOI | MR | Zbl
[6] Amblard P. O., Coeurjolly J. F., Lavancier F., Philippe A., “Basic properties of the multivariate fractional Brownian motion”, Bulletin Society Mathematique de France, Seminaires et Congres, 28 (2012), 65-87 | MR
[7] Zolotarev B. M., One-dimensional Stable Distributions, Nauka Publ., Moscow, 1983, 304 pp. (in Russian) | MR
[8] Nolan J. P., “Multivariate elliptically contoured stable distributions: theory and estimation”, Computational Statistics, 28:5 (2013), 2067-2089 | DOI | MR | Zbl
[9] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman $\$ Hall, London, 1994, 632 pp. | MR | Zbl
[10] Embrechts P., Maejima M., Selfsimilar Process, Princeton University Press, Princeton, NJ, 2002, 111 pp. | MR
[11] Khokhlov Yu. S., “Multivariate fractional Levy motion and its applications”, Informatics and its Applications, 10:2 (2016), 98-106 (in Russian) | DOI
[12] De Nikola C., Khokhlov Yu. S., Pagano M., Sidorova O. I., “Fractional Levy motion with dependent increments and its application to network traffic modeling”, Informatika i ee primeneniya, 6:3 (2012), 59-63
[13] Breiman L., “On some limit theorems similar to the arc-sin law”, Theory of Probability and its Applications, 10:2 (1965), 323-331 | DOI | MR | Zbl
[14] Ibragimov I. A., Linnik Ju. V., Independent and Permanently Connected Quantities, Nauka Publ., Moscow, 1965, 524 pp. (in Russian) | MR