On common exact solutions of Navier-Stokes and quasi-hydrodynamic systems for nonstationary flows
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 13-25

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Trkal method for constructing uniformly-helical solutions of nonstationary Navier-Stokes equations is applicable for quasi-hydrodynamic system. A wider class of flows, obeying the generalized Gromeki-Beltrami condition, is considered. Examples of exact solutions, common to the Navier-Stokes and quasi-hydrodynamic systems, but not satisfying the Euler equations, are given.
Keywords: Navier-Stokes and Euler systems, Trkal method, generalized Gromeka-Beltrami condition, helical flows.
Mots-clés : quasi-hydrodynamic equations, exact solutions
@article{VTPMK_2017_3_a1,
     author = {Yu. V. Sheretov},
     title = {On common exact solutions of {Navier-Stokes} and quasi-hydrodynamic systems for nonstationary flows},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {13--25},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - On common exact solutions of Navier-Stokes and quasi-hydrodynamic systems for nonstationary flows
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 13
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a1/
LA  - ru
ID  - VTPMK_2017_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T On common exact solutions of Navier-Stokes and quasi-hydrodynamic systems for nonstationary flows
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 13-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a1/
%G ru
%F VTPMK_2017_3_a1
Yu. V. Sheretov. On common exact solutions of Navier-Stokes and quasi-hydrodynamic systems for nonstationary flows. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2017), pp. 13-25. http://geodesic.mathdoc.fr/item/VTPMK_2017_3_a1/