@article{VTPMK_2017_2_a3,
author = {O. L. Boziev},
title = {An approximate solution of loaded hyperbolic equation with homogenios initial conditions},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {49--58},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/}
}
TY - JOUR AU - O. L. Boziev TI - An approximate solution of loaded hyperbolic equation with homogenios initial conditions JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 49 EP - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/ LA - ru ID - VTPMK_2017_2_a3 ER -
%0 Journal Article %A O. L. Boziev %T An approximate solution of loaded hyperbolic equation with homogenios initial conditions %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 49-58 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/ %G ru %F VTPMK_2017_2_a3
O. L. Boziev. An approximate solution of loaded hyperbolic equation with homogenios initial conditions. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 49-58. http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/
[1] Lions J. L., Some Methods for Solving of Nonlinear Boundary Value Problems, Moscow, Editorial URSS Publ., 2010, 586 pp. (in Russian) | MR
[2] Medeiros L. A., “On the weak solutions of nonlinear partial differential equations”, Anais da Academia Brasileira de Ciencias, 53:1 (1981), 13-15 | MR | Zbl
[3] Lourêdo A. T., Ferreira de Araújo M. A., Miranda M. M., “On a nonlinear wave equation with boundary damping”, Mathematical Methods in the Applied Sciences, 37:9 (2014), 1278-1302 | MR | Zbl
[4] Boziev O. L., “Solving an initial-boundary value problem for the nonlinear hyperbolic equation using a double reduction to the loaded equations”, Izvestiya Kabardino-Balkarskogo Nauchnogo Tsentra RAN, 2014, no. 4(60), 7-12 (in Russian)
[5] Boziev O. L., “Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2015, no. 1, 127-136 (in Russian)
[6] Boziev O. L., “An approximate solution of loaded hyperbolic equation with homogenios boundary conditions”, Bulletin of the South Ural State University. Ser. Mathematics. Mechanics. Phisics, 8:2 (2016), 14-18 (in Russian) | Zbl
[7] Demidovich B. P., Lectures on Mathematical Theory of Stability, Moscow, Nauka Publ., 1967, 472 pp. (in Russian) | MR