An approximate solution of loaded hyperbolic equation with homogenios initial conditions
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article offers a method for solving a mixed problem with homogeneous initial conditions for a loaded hyperbolic equation with integral natural degree module of unknown function. An approximate solution is sought by means of a priori estimates of the solution of the problem. We obtained a formula expressing the solution through the solution of the ordinary differential equation associated with the source loaded equation.
Keywords: nonlinear partial differential equations, loaded partial differential equations, a priori estimates, approximate solutions.
@article{VTPMK_2017_2_a3,
     author = {O. L. Boziev},
     title = {An approximate solution of loaded hyperbolic equation with homogenios initial conditions},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {49--58},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - An approximate solution of loaded hyperbolic equation with homogenios initial conditions
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 49
EP  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/
LA  - ru
ID  - VTPMK_2017_2_a3
ER  - 
%0 Journal Article
%A O. L. Boziev
%T An approximate solution of loaded hyperbolic equation with homogenios initial conditions
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 49-58
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/
%G ru
%F VTPMK_2017_2_a3
O. L. Boziev. An approximate solution of loaded hyperbolic equation with homogenios initial conditions. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 49-58. http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/

[1] Lions J. L., Some Methods for Solving of Nonlinear Boundary Value Problems, Moscow, Editorial URSS Publ., 2010, 586 pp. (in Russian) | MR

[2] Medeiros L. A., “On the weak solutions of nonlinear partial differential equations”, Anais da Academia Brasileira de Ciencias, 53:1 (1981), 13-15 | MR | Zbl

[3] Lourêdo A. T., Ferreira de Araújo M. A., Miranda M. M., “On a nonlinear wave equation with boundary damping”, Mathematical Methods in the Applied Sciences, 37:9 (2014), 1278-1302 | MR | Zbl

[4] Boziev O. L., “Solving an initial-boundary value problem for the nonlinear hyperbolic equation using a double reduction to the loaded equations”, Izvestiya Kabardino-Balkarskogo Nauchnogo Tsentra RAN, 2014, no. 4(60), 7-12 (in Russian)

[5] Boziev O. L., “Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2015, no. 1, 127-136 (in Russian)

[6] Boziev O. L., “An approximate solution of loaded hyperbolic equation with homogenios boundary conditions”, Bulletin of the South Ural State University. Ser. Mathematics. Mechanics. Phisics, 8:2 (2016), 14-18 (in Russian) | Zbl

[7] Demidovich B. P., Lectures on Mathematical Theory of Stability, Moscow, Nauka Publ., 1967, 472 pp. (in Russian) | MR