An approximate solution of loaded hyperbolic equation with homogenios initial conditions
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 49-58
Voir la notice de l'article provenant de la source Math-Net.Ru
The article offers a method for solving a mixed problem with homogeneous initial conditions for a loaded hyperbolic equation with integral natural degree module of unknown function. An approximate solution is sought by means of a priori estimates of the solution of the problem. We obtained a formula expressing the solution through the solution of the ordinary differential equation associated with the source loaded equation.
Keywords:
nonlinear partial differential equations, loaded partial differential equations, a priori estimates, approximate solutions.
@article{VTPMK_2017_2_a3,
author = {O. L. Boziev},
title = {An approximate solution of loaded hyperbolic equation with homogenios initial conditions},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {49--58},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/}
}
TY - JOUR AU - O. L. Boziev TI - An approximate solution of loaded hyperbolic equation with homogenios initial conditions JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 49 EP - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/ LA - ru ID - VTPMK_2017_2_a3 ER -
%0 Journal Article %A O. L. Boziev %T An approximate solution of loaded hyperbolic equation with homogenios initial conditions %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 49-58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/ %G ru %F VTPMK_2017_2_a3
O. L. Boziev. An approximate solution of loaded hyperbolic equation with homogenios initial conditions. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 49-58. http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a3/