On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 5-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Three families of exact solutions, which are common for the stationary Navier-Stokes system and corresponding quasi-hydrodynamic system, are constructed. These solutions do not satisfy to Euler equations. The concrete examples of solutions that describe the flows of a viscous fluid are presented. Their physical interpretation is given.
Keywords: Navier-Stokes and Euler systems
Mots-clés : quasi-hydrodynamic equations, exact solutions.
@article{VTPMK_2017_2_a0,
     author = {Yu. V. Sheretov},
     title = {On the common exact solutions of stationary {Navier-Stokes} and quasi-hydrodynamic systems, not satisfying to {Euler} equations},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--15},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 5
EP  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/
LA  - ru
ID  - VTPMK_2017_2_a0
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 5-15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/
%G ru
%F VTPMK_2017_2_a0
Yu. V. Sheretov. On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 5-15. http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/