On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 5-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Three families of exact solutions, which are common for the stationary Navier-Stokes system and corresponding quasi-hydrodynamic system, are constructed. These solutions do not satisfy to Euler equations. The concrete examples of solutions that describe the flows of a viscous fluid are presented. Their physical interpretation is given.
Keywords:
Navier-Stokes and Euler systems
Mots-clés : quasi-hydrodynamic equations, exact solutions.
Mots-clés : quasi-hydrodynamic equations, exact solutions.
@article{VTPMK_2017_2_a0,
author = {Yu. V. Sheretov},
title = {On the common exact solutions of stationary {Navier-Stokes} and quasi-hydrodynamic systems, not satisfying to {Euler} equations},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--15},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/}
}
TY - JOUR AU - Yu. V. Sheretov TI - On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 5 EP - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/ LA - ru ID - VTPMK_2017_2_a0 ER -
%0 Journal Article %A Yu. V. Sheretov %T On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 5-15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/ %G ru %F VTPMK_2017_2_a0
Yu. V. Sheretov. On the common exact solutions of stationary Navier-Stokes and quasi-hydrodynamic systems, not satisfying to Euler equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2017), pp. 5-15. http://geodesic.mathdoc.fr/item/VTPMK_2017_2_a0/