On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 85-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two new exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates are constructed. First solution is common for Euler and Navier-Stokes systems. The second solution satisfies to Navier-Stokes system, but it is not exact solution for Euler equations. Both solutions describe vortex structures in the fluid.
Keywords: Euler and Navier-Stokes systems, cylindrical coordinates
Mots-clés : quasi-hydrodynamic equations, exact solutions.
@article{VTPMK_2017_1_a6,
     author = {Yu. V. Sheretov},
     title = {On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {85--94},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 85
EP  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/
LA  - ru
ID  - VTPMK_2017_1_a6
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 85-94
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/
%G ru
%F VTPMK_2017_1_a6
Yu. V. Sheretov. On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 85-94. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/

[1] Loytsyansky L. G., Fluid and Gas Mechanics, “Nauka” Publ., Moscow, 1987, 840 pp. (in Russian) | MR

[2] Shmyglevskii Yu. D., Analytical Investigation of Fluid and Gas Dynamics, “Editorial URSS” Publ., Moscow, 1999, 232 pp. (in Russian) | MR

[3] Sheretov Yu. V., “On uniqueness of the solutions for one dissipative system of hydrodynamic type”, Mathematical Modeling, 6:10 (1994), 35-45 (in Russian) | MR | Zbl

[4] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, “Regular and Chaotic Dynamics” Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)

[5] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)

[6] Zherikov A. V., Application of Quasi-Hydrodynamic Equations: Mathematical Modeling of Viscous Incompressible Fluid, Lambert Academic Publishing, Saarbrücken, 2010, 124 pp. (in Russian)

[7] Elizarova T. G., Milyukova O. Yu., “Numerical simulation of viscous incompressible flow in a cubic cavity”, Computational Mathematics and Mathematical Physics, 43:3 (2003), 433-445 | MR | Zbl

[8] Grigoryeva V. V., Sheretov Yu. V., “On the exact solutions of full quasi-hydrodynamic equations for stationary flows”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 1, 93-101 (in Russian)

[9] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Advances in Applied Mechanics, 1 (1948), 171-199 | DOI | MR

[10] Brutyan M. A., “Burgers vortex in a micropolar fluid”, National Academy of Sciences of Armenia Reports, 2010, no. 1, 35-41 (in Russian)