Mots-clés : quasi-hydrodynamic equations, exact solutions.
@article{VTPMK_2017_1_a6,
author = {Yu. V. Sheretov},
title = {On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {85--94},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/}
}
TY - JOUR AU - Yu. V. Sheretov TI - On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 85 EP - 94 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/ LA - ru ID - VTPMK_2017_1_a6 ER -
%0 Journal Article %A Yu. V. Sheretov %T On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 85-94 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/ %G ru %F VTPMK_2017_1_a6
Yu. V. Sheretov. On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 85-94. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a6/
[1] Loytsyansky L. G., Fluid and Gas Mechanics, “Nauka” Publ., Moscow, 1987, 840 pp. (in Russian) | MR
[2] Shmyglevskii Yu. D., Analytical Investigation of Fluid and Gas Dynamics, “Editorial URSS” Publ., Moscow, 1999, 232 pp. (in Russian) | MR
[3] Sheretov Yu. V., “On uniqueness of the solutions for one dissipative system of hydrodynamic type”, Mathematical Modeling, 6:10 (1994), 35-45 (in Russian) | MR | Zbl
[4] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, “Regular and Chaotic Dynamics” Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)
[5] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)
[6] Zherikov A. V., Application of Quasi-Hydrodynamic Equations: Mathematical Modeling of Viscous Incompressible Fluid, Lambert Academic Publishing, Saarbrücken, 2010, 124 pp. (in Russian)
[7] Elizarova T. G., Milyukova O. Yu., “Numerical simulation of viscous incompressible flow in a cubic cavity”, Computational Mathematics and Mathematical Physics, 43:3 (2003), 433-445 | MR | Zbl
[8] Grigoryeva V. V., Sheretov Yu. V., “On the exact solutions of full quasi-hydrodynamic equations for stationary flows”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 1, 93-101 (in Russian)
[9] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Advances in Applied Mechanics, 1 (1948), 171-199 | DOI | MR
[10] Brutyan M. A., “Burgers vortex in a micropolar fluid”, National Academy of Sciences of Armenia Reports, 2010, no. 1, 35-41 (in Russian)