A family of wavelets based on a prolate spheroidal wave function of zero order
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 71-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article class of wavelets on the basis of zero order prolate spheroidal wave function is synthesized. Prolate spheroidal wave function is mother wavelet. This function dominates by energy each of well-known mother wavelets on given support. This article is contribution to the theory and practice of wavelet-analysis.
Keywords: wavelet, prolate spheroidal wave function, scaling function.
@article{VTPMK_2017_1_a5,
     author = {A. N. Katulev and M. F. Malevinsky},
     title = {A family of wavelets based on a prolate spheroidal wave function of zero order},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {71--84},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/}
}
TY  - JOUR
AU  - A. N. Katulev
AU  - M. F. Malevinsky
TI  - A family of wavelets based on a prolate spheroidal wave function of zero order
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 71
EP  - 84
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/
LA  - ru
ID  - VTPMK_2017_1_a5
ER  - 
%0 Journal Article
%A A. N. Katulev
%A M. F. Malevinsky
%T A family of wavelets based on a prolate spheroidal wave function of zero order
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 71-84
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/
%G ru
%F VTPMK_2017_1_a5
A. N. Katulev; M. F. Malevinsky. A family of wavelets based on a prolate spheroidal wave function of zero order. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 71-84. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/

[1] Dobeshi I., Ten Lectures on Wavelets, NITs “Regulyarnaya i Khaoticheskaya Dinamika” Publ., Izhevsk, 2001, 464 pp. (in Russian)

[2] Smolentsev N. K., Fundamentals of the Theory of Wavelets. Wavelets in Matlab, DMK Press, Moscow, 2005, 304 pp. (in Russian)

[3] Katulev A. N., Malevinkii M. F., “Wavelet-odd wave spheroidal functions in the problem of two-dimensional image segmentation”, Autometry, 52:3 (2016), 10-19 (in Russian)

[4] Vilenchik L. S., Katulev A. N., Malevinskii M. F., “Method for calculating prolate wave spheroidal functions on the basis of Kotelnikov series”, Electromagnetic Waves and Electronic Systems, 2:4 (1997), 5-9 (in Russian)

[5] Komarov I. V., Ponomarev L. I., Slavyanov S. Yu., Spheroidal and Coulomb Spheroidal Functions, Fizmatlit Publ., Moscow, 1976, 320 pp. (in Russian) | MR

[6] Kudinov A. N., Katulev A. N., Malevinskii M. F., Mathematical Methods for Estimating the Safety Indicators of States of Dynamical Systems, Lomonosov MSU Publ., Moscow, 2005, 375 pp. (in Russian)

[7] Khurgin Ya. I., Yakovlev V. P., Finite Functions in Physics and Engineering, Nauka Publ., Moscow, 1971, 408 pp. (in Russian)

[8] Freizer M., Introduction to Wavelets in the Light of Linear Algebra, Binom Publ., Moscow, 2008, 487 pp. (in Russian)

[9] Ablekov V. K., Kolyadin S. A., Frolov A. V., High-Resolution Optical Systems, Mashinostroenie Publ., Moscow, 1985, 176 pp. (in Russian)

[10] Kravchenko V. F., Rvachev V. L., Algebra of Logic, Atomic Functions and Wavelets in Physical Applications, Fizmatlit Publ., Moscow, 2006, 416 pp. (in Russian)