@article{VTPMK_2017_1_a5,
author = {A. N. Katulev and M. F. Malevinsky},
title = {A family of wavelets based on a prolate spheroidal wave function of zero order},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {71--84},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/}
}
TY - JOUR AU - A. N. Katulev AU - M. F. Malevinsky TI - A family of wavelets based on a prolate spheroidal wave function of zero order JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 71 EP - 84 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/ LA - ru ID - VTPMK_2017_1_a5 ER -
%0 Journal Article %A A. N. Katulev %A M. F. Malevinsky %T A family of wavelets based on a prolate spheroidal wave function of zero order %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 71-84 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/ %G ru %F VTPMK_2017_1_a5
A. N. Katulev; M. F. Malevinsky. A family of wavelets based on a prolate spheroidal wave function of zero order. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 71-84. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a5/
[1] Dobeshi I., Ten Lectures on Wavelets, NITs “Regulyarnaya i Khaoticheskaya Dinamika” Publ., Izhevsk, 2001, 464 pp. (in Russian)
[2] Smolentsev N. K., Fundamentals of the Theory of Wavelets. Wavelets in Matlab, DMK Press, Moscow, 2005, 304 pp. (in Russian)
[3] Katulev A. N., Malevinkii M. F., “Wavelet-odd wave spheroidal functions in the problem of two-dimensional image segmentation”, Autometry, 52:3 (2016), 10-19 (in Russian)
[4] Vilenchik L. S., Katulev A. N., Malevinskii M. F., “Method for calculating prolate wave spheroidal functions on the basis of Kotelnikov series”, Electromagnetic Waves and Electronic Systems, 2:4 (1997), 5-9 (in Russian)
[5] Komarov I. V., Ponomarev L. I., Slavyanov S. Yu., Spheroidal and Coulomb Spheroidal Functions, Fizmatlit Publ., Moscow, 1976, 320 pp. (in Russian) | MR
[6] Kudinov A. N., Katulev A. N., Malevinskii M. F., Mathematical Methods for Estimating the Safety Indicators of States of Dynamical Systems, Lomonosov MSU Publ., Moscow, 2005, 375 pp. (in Russian)
[7] Khurgin Ya. I., Yakovlev V. P., Finite Functions in Physics and Engineering, Nauka Publ., Moscow, 1971, 408 pp. (in Russian)
[8] Freizer M., Introduction to Wavelets in the Light of Linear Algebra, Binom Publ., Moscow, 2008, 487 pp. (in Russian)
[9] Ablekov V. K., Kolyadin S. A., Frolov A. V., High-Resolution Optical Systems, Mashinostroenie Publ., Moscow, 1985, 176 pp. (in Russian)
[10] Kravchenko V. F., Rvachev V. L., Algebra of Logic, Atomic Functions and Wavelets in Physical Applications, Fizmatlit Publ., Moscow, 2006, 416 pp. (in Russian)