Maximum entropy model for forming an investment portfolio
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 45-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the problem of allocating investments across a set of assets while applying lower requirements to the input data compared to common approaches. The need for researching this problem springs from limited abilities for acquiring information regarding possible outcomes of investment decisions in practice. The article assumes the uncertainty regarding the outcomes is premised on the probabilistic nature of the target value. At the same time, the only accessible information includes ranges of possible target values for each considered asset. The problem is framed within the concept of expected utility and is solved for the preferences of investors with constant risk aversion while assuming the considered assets are statistically independent of each other. The result of the problem solution is represented by the analytical expressions of the preferential allocation of the investments across the assets. The resulting expressions can be used directly for forming portfolios in making investment decisions. An illustration of using the proposed model is given. The generalized conclusions are formulated regarding the commonality and usability of the received results.
Keywords: investment portfolio, investor preferences, expected utility, risk aversion, entropy, central limit theorem.
@article{VTPMK_2017_1_a3,
     author = {V. N. Mikhno},
     title = {Maximum entropy model for forming an investment portfolio},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {45--55},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a3/}
}
TY  - JOUR
AU  - V. N. Mikhno
TI  - Maximum entropy model for forming an investment portfolio
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 45
EP  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a3/
LA  - ru
ID  - VTPMK_2017_1_a3
ER  - 
%0 Journal Article
%A V. N. Mikhno
%T Maximum entropy model for forming an investment portfolio
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 45-55
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a3/
%G ru
%F VTPMK_2017_1_a3
V. N. Mikhno. Maximum entropy model for forming an investment portfolio. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 45-55. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a3/

[1] Markowitz H. M., “Portfolio Selection”, The Journal of Finance, 7:1 (1952), 77-91 | MR

[2] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, John Wiley Sons, NY, 1959 | MR

[3] Keeney R. L., Raiffa H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs, “Radio i Svyaz” Publ., Saint-Petersburg, 1981, 560 pp. (in Russian) | MR

[4] Fishbern P., Utility Theory for Decision Making, Nauka Publ., Moscow, 1978, 352 pp. (in Russian) | MR

[5] Csiszar I., Kerner J., Information Theory, “Mir” Publ., Moscow, 1985, 400 pp. (in Russian)

[6] Neumann J., Morgenstern O., Game Theory and Economic Behavior, Nauka Publ., Moscow, 1970, 983 pp. (in Russian) | MR

[7] Cramer H., Mathematical Methods of Statistics, “Mir” Publ., Moscow, 1975, 648 pp. (in Russian) | MR

[8] Korn G., Korn T., Mathematical Handbook, Nauka Publ., Moscow, 1978, 832 pp. (in Russian) | MR

[9] Kruschwitz L., Investment Calculations, PITER Publ., Saint-Petersburg, 2001, 432 pp. (in Russian)

[10] Gill Ph., Murray W., Wright M., Practical Optimization, “Mir” Publ., Moscow, 1985, 509 pp. (in Russian) | MR