@article{VTPMK_2017_1_a2,
author = {Yu. Malyshkin},
title = {High degree vertices in the power of choice model combined with preferential attachment},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {31--43},
year = {2017},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a2/}
}
TY - JOUR AU - Yu. Malyshkin TI - High degree vertices in the power of choice model combined with preferential attachment JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 31 EP - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a2/ LA - en ID - VTPMK_2017_1_a2 ER -
%0 Journal Article %A Yu. Malyshkin %T High degree vertices in the power of choice model combined with preferential attachment %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 31-43 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a2/ %G en %F VTPMK_2017_1_a2
Yu. Malyshkin. High degree vertices in the power of choice model combined with preferential attachment. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 31-43. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a2/
[1] Barabási A., Albert R., “Emergence of scaling in random networks”, Science, 286:5439 (1999), 509-512 | DOI | MR | Zbl
[2] D'Souza R. M., Krapivsky P. L., Moor C., “The power of choice in growing trees”, The European Physical Journal B, 59:4 (2007), 535-543 | DOI | MR | Zbl
[3] Dommers S., Hofstad R., Hooghiemstra G., “Diameters in preferential attachment models”, Journal of Statistical Physics, 139:1 (2010), 72-107 | DOI | MR | Zbl
[4] Fenner T., Flaxman A., Frieze A., “High degree vertices and eigenvalues in the preferential attachment graph”, Internet Mathematics, 2:1 (2005), 1-19 | DOI | MR | Zbl
[5] Galashin P. A., Existence of a persistent hub in the convex preferential attachment model, October 2013, arXiv: 1310.7513 | MR
[6] Johnson N. L., Kotz S., Urn models and their application, John Wiley and Sons, New York, 1977 | MR | Zbl
[7] Krapivsky P. L., Redner S., “Choice-driven phase transition in complex networks”, Journal of Statistical Mechanics: Theory and Experiment, 2014 | MR
[8] Leyvraz F., Krapivsky P. L., Redner S., “Connectivity of growing random networks”, Physical Review Letters, 85 (2000), 4629-4632 | DOI
[9] Kuba M., Mahmoud H., Panholzer A., “Analysis of a generalized friedman's urn with multiple drawings”, Discrete Applied Mathematics, 161:18 (2013), 2968-2984 | DOI | MR | Zbl
[10] Mahmoud H., Polya urn models, Chapman and Hall/CRC, 2009 | MR
[11] Malyshkin Y., Paquette E., “The power of choice combine with preferential attachment”, Electronic Communication in Probability, 19:44 (2014), 1-13 | MR
[12] Malyshkin Y., Paquette E., “The power of choice over preferential attachment”, Latin American Journal of Probability and Mathematical Statistics, 12:2 (2015), 903-915 | MR | Zbl
[13] Tamás F. Móri, “The maximum degree of the Barabási-Albert random tree”, Combinatorics, Probability and Computing, 14:3 (2005), 339-348 | DOI | MR | Zbl
[14] Shiryaev A. N., Probability, Second edition, Springer, 1996, 621 pp. | MR