On one application of fractional Levy motion to network traffic modeling
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 17-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Markovian theory effectively used in modeling of text and voice transmission is not able to reflect the high variability of packet traffic coupled with the presence of long memory. It leads to a substantial underestimation of the network load and a very non-accurate estimation of performance measures. Hence the construction of more adequate models of data flows and analysis of their properties remains a very important task. In this paper we found a non-asymptotic upper bound for queue length in the infinite buffer queue fed by a fractal Levy motion. The analysis follows a network calculus approach where traffic is characterized by envelope functions and do not assume a steady state, large buffer, or many sources regime.
Keywords: fractional Brownian motion, $\alpha$-stable subordinator, self-similar processes, envelope processes, queue length.
@article{VTPMK_2017_1_a1,
     author = {O. I. Sidorova},
     title = {On one application of fractional {Levy} motion to network traffic modeling},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {17--29},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a1/}
}
TY  - JOUR
AU  - O. I. Sidorova
TI  - On one application of fractional Levy motion to network traffic modeling
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2017
SP  - 17
EP  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a1/
LA  - ru
ID  - VTPMK_2017_1_a1
ER  - 
%0 Journal Article
%A O. I. Sidorova
%T On one application of fractional Levy motion to network traffic modeling
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2017
%P 17-29
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a1/
%G ru
%F VTPMK_2017_1_a1
O. I. Sidorova. On one application of fractional Levy motion to network traffic modeling. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 17-29. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a1/

[1] Khokhlov Yu. S., “The multidimensional fractional Levi motion and its applications”, Informatics and its applications, 10:2 (2016), 98-106 (in Russian)

[2] Breiman L., “On some limit theorems similar to the arc-sin law”, Theory of Probability and its Applications, 10:2 (1965), 351-359 | MR

[3] Le Boudec J. Y., Thiran P., “A short tutorial on Network Calculus I: fundamental bounds in Communication Networks”, Proceedings of 2000 IEEE International Symposium on Circuits and Systems, ISCAS’2000 (Geneva, Switzerland, 28-31 May 2000), 1426-1428 | MR

[4] Ciucu F., Burchard A., Liebeherr J., “Scaling properties of statistical end-to-end bounds in the network calculus”, Transactions on Information Theory, 52:6 (2006), 2300-2312 | DOI | MR | Zbl

[5] Crovella M., Bestavros A., “Self-similarity in world wide web traffic: evidence and possible causes”, Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and Modelling of Computer Systems, 1996, 160-169 | DOI

[6] Crovella M., Kim G., Park K., “On the relationship between file sizes, transport protocols, and self-similar network traffic”, Proceedings of the Fourth International Conference on Network Protocols, ICNP’96 (Columbus, Ohio, U.S.A, October 29 - November 1, 1996), 171-180

[7] Embrechts P., Maejima M., Selfsimilar Process, Prinston University Press, 2002, 111 pp. | MR

[8] Leland W. E., Taqqu M. S., Willinger W., Willson D. V., “On the self-similar nature of Ethernet traffic (Extended version)”, IEEE/ACM Transactions on Networking, 2 (1994), 1-15 | DOI

[9] Liebeherr J., Burchard A., Ciucu F., “Delay bounds for networks with heavy-tailed and self-similar traffic”, IEEE Transactions on Information Theory, 58:2 (2012), 1010-1024 | DOI | MR

[10] Mikosch Th., Resnick S., Rootzen H., Stegeman A., Is network traffic approximated by stable Levy motion or fractional Brownian motion?, Annals of Applied Probability, 12:1 (2002), 23-68 | DOI | MR | Zbl

[11] Nikola C. D., Khokhlov Y. S., Pagano M., Sidorova O. I., “Fractional Levy motion with dependent increments and its application to network traffic modeling”, Informatics and its applications, 6:3 (2012), 59-63

[12] Starobinski D., Sidi M., “Stochastically bounded burstiness for communication networks”, IEEE Transactions on Information Theory, 46:1 (2000), 206-212 | DOI | MR | Zbl

[13] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman$\$Hall, 1994, 632 pp. | MR | Zbl

[14] Taqqu M. S., Willinger W., Sherman R., “Proof of a fundamental result in self-similar traffic modeling”, Computer Communication Review, 27:2 (1997), 5-23 | DOI

[15] Yaron O., Sidi M., “Performance and stability of communication networks via robust exponential bounds”, IEEE/ACM Transactions on Networking, 1:3 (1993), 372-385 | DOI

[16] Yin Q., Jiang Y., Jiang S., Kong P. Y., “Analysis on generalized stochastically bounded bursty traffic for communication networks”, Proceedings of 27th Annual IEEE Conference on Local Computer Networks, LCN 2002 (Tampa, Florida, USA, November 6-8, 2002), 141-149